Log in

Simultaneous voltammetric detection of cadmium(II), arsenic(III), and selenium(IV) using gold nanostar–modified screen-printed carbon electrodes and modified Britton-Robinson buffer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The present work reports a newly developed square wave anodic strip** voltammetry (SWASV) methodology using novel gold nanostar–modified screen-printed carbon electrodes (AuNS/SPCE) and modified Britton-Robinson buffer (mBRB) for simultaneous detection of trace cadmium(II), arsenic(III), and selenium(IV). During individual and simultaneous detection, Cd2+, As3+, and Se4+ exhibited well-separated SWASV peaks at approximately − 0.48, − 0.09, and 0.65 V, respectively (versus Ag/AgCl reference electrode), which enabled a highly selective detection of the three analytes. Electrochemical impedance spectrum tests showed a significant decrease in charge transfer resistance with the AuNS/SPCE (0.8 kΩ) compared with bare SPCE (2.4 kΩ). Cyclic voltammetry experiments showed a significant increase in electroactive surface area with electrode modification. The low charge transfer resistance and high electroactive surface area contributed to the high sensitivity for Cd2+ (0.0767 μA (0.225 μg L−1)−1), As3+ (0.2213 μA (μg L−1)−1), and Se4+ (μA (μg L−1)−1). The three analytes had linear strip** responses over the concentration range of 0 to 100 μg L−1, with the obtained LoD for Cd2+, As3+, and Se4+ of 1.6, 0.8, and 1.6 μg L−1, respectively. In comparison with individual detection, the simultaneous detection of As3+ and Se4+ showed peak height reductions of 40.8% and 42.7%, respectively. This result was associated with the possible formation of electrochemically inactive arsenic triselenide (As2Se3) during the preconcentration step. Surface water analysis resulted in average percent recoveries of 109% for Cd2+, 93% for As3+, and 92% for Se4+, indicating the proposed method is accurate and reliable for the simultaneous detection of Cd2+, As3+, and Se4+ in real water samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mejáre M, Bülow L. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 2001;19:67–73. https://doi.org/10.1016/s0167-7799(00)01534-1.

    Article  PubMed  Google Scholar 

  2. Nawrot TS, Staessen JA, Roels HA, Munters E, Cuypers A, Richart T, et al. Cadmium exposure in the population: from health risks to strategies of prevention. Biometals. 2010;23:769–82. https://doi.org/10.1007/s10534-010-9343-z.

    Article  CAS  PubMed  Google Scholar 

  3. EPA, National Primary Drinking Water Regulations, 2009.

    Google Scholar 

  4. Majid E, Hrapovic S, Liu Y, Male KB, Luong JH. Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal Chem. 2006;78:762–9. https://doi.org/10.1021/ac0513562.

    Article  CAS  PubMed  Google Scholar 

  5. Yokel RA, Lasley SM, Dorman DC. The speciation of metals in mammals influences their toxicokinetics and toxicodynamics and therefore human health risk assessment. J Toxicol Environ Health B Crit Rev. 2006;9:63–85. https://doi.org/10.1080/15287390500196230.

    Article  CAS  PubMed  Google Scholar 

  6. Luong JHT, Lam E, Male KB. Recent advances in electrochemical detection of arsenic in drinking and ground waters. Anal Methods. 2014;6:6157–69. https://doi.org/10.1039/c4ay00817k.

    Article  CAS  Google Scholar 

  7. Segura R, Pizarro J, Díaz K, Placencio A, Godoy F, Pino E, et al. Development of electrochemical sensors for the determination of selenium using gold nanoparticles modified electrodes. Sensor Actuat B-Chem. 2015;220:263–9. https://doi.org/10.1016/j.snb.2015.05.016.

    Article  CAS  Google Scholar 

  8. Piech R, Kubiak WW. Determination of trace selenium on hanging copper amalgam drop electrode. Electrochim Acta. 2007;53:584–9. https://doi.org/10.1016/j.electacta.2007.07.017.

    Article  CAS  Google Scholar 

  9. Tan SH, Kounaves SP. Determination of selenium(IV) at a microfabricated gold ultramicroelectrode array using square wave anodic strip** voltammetry. Electroanalysis. 1998;10:364–8. https://doi.org/10.1002/(sici)1521-4109(199805)10:6<364::Aid-elan364>3.0.Co;2-f.

    Article  CAS  Google Scholar 

  10. Sereshti H, Heravi YE, Samadi S. Optimized ultrasound-assisted emulsification microextraction for simultaneous trace multielement determination of heavy metals in real water samples by ICP-OES. Talanta. 2012;97:235–41. https://doi.org/10.1016/j.talanta.2012.04.024.

    Article  CAS  PubMed  Google Scholar 

  11. Huang C, Jiang Z, Hu B. Mesoporous titanium dioxide as a novel solid-phase extraction material for flow injection micro-column preconcentration on-line coupled with ICP-OES determination of trace metals in environmental samples. Talanta. 2007;73:274–81. https://doi.org/10.1016/j.talanta.2007.03.046.

    Article  CAS  PubMed  Google Scholar 

  12. Ranjbar L, Yamini Y, Saleh A, Seidi S, Faraji M. Ionic liquid based dispersive liquid-liquid microextraction combined with ICP-OES for the determination of trace quantities of cobalt, copper, manganese, nickel and zinc in environmental water samples. Microchim Acta. 2012;177:119–27. https://doi.org/10.1007/s00604-011-0757-2.

    Article  CAS  Google Scholar 

  13. Narin I. Determination of trace metal ions by AAS in natural water samples after preconcentration of pyrocatechol violet complexes on an activated carbon column. Talanta. 2000;52:1041–6. https://doi.org/10.1016/S0039-9140(00)00468-9.

    Article  CAS  PubMed  Google Scholar 

  14. Rafiquel I, Jannat AF, Hasanuzzaman, Musrat R, Laisa AL, Dipak KP. Pollution assessment and heavy metal determination by AAS in waste water collected from Kushtia industrial zone in Bangladesh. Afr J Environ Sci Technol. 2016;10:9–17. https://doi.org/10.5897/AJEST2014.1994.

    Article  Google Scholar 

  15. Zhao S, Liang H, Yan H, Yan Z, Chen S, Zhu X, et al. Online preconcentration and determination of trace levels cadmium in water samples using flow injection systems coupled with flame AAS. CLEAN - Soil, Air, Water. 2010;38:146–52. https://doi.org/10.1002/clen.200900228.

    Article  CAS  Google Scholar 

  16. Li Y, Peng G, He Q, Zhu H, Al-Hamadani SM. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters. Spectrochim Acta A Mol Biomol Spectrosc. 2015;140:156–61. https://doi.org/10.1016/j.saa.2014.12.091.

    Article  CAS  PubMed  Google Scholar 

  17. Ammann AA. Speciation of heavy metals in environmental water by ion chromatography coupled to ICP-MS. Anal Bioanal Chem. 2002;372:448–52. https://doi.org/10.1007/s00216-001-1115-8.

    Article  CAS  PubMed  Google Scholar 

  18. El-Sewify IM, Shenashen MA, Shahat A, Yamaguchi H, Selim MM, Khalil MMH, et al. Ratiometric fluorescent chemosensor for Zn2+ ions in environmental samples using supermicroporous organic-inorganic structures as potential platforms. ChemistrySelect. 2017;2:11083–90. https://doi.org/10.1002/slct.201702283.

    Article  CAS  Google Scholar 

  19. El-Sewify IM, Shenashen MA, Shahat A, Selim MM, Khalil MMH, El-Safty SA. Sensitive and selective fluorometric determination and monitoring of Zn2+ ions using supermicroporous Zr-MOFs chemosensors. Microchem J. 2018;139:24–33. https://doi.org/10.1016/j.microc.2018.02.002.

    Article  CAS  Google Scholar 

  20. El-Sewify IM, Shenashen MA, Shahat A, Yamaguchi H, Selim MM, Khalil MMH, et al. Dual colorimetric and fluorometric monitoring of Bi3+ ions in water using supermicroporous Zr-MOFs chemosensors. J Lumin. 2018;198:438–48. https://doi.org/10.1016/j.jlumin.2018.02.028.

    Article  CAS  Google Scholar 

  21. Toor SK, Devi P, Bansod BKS. Electrochemical detection of trace amount of arsenic (III) at glassy carbon electrode modified with au/Fe3O4 nanocomposites. Aqua Procedia. 2015;4:1107–13. https://doi.org/10.1016/j.aqpro.2015.02.140.

    Article  Google Scholar 

  22. Chow E, Hibbert DB, Gooding JJ. Voltammetric detection of cadmium ions at glutathione-modified gold electrodes. Analyst. 2005;130:831–7. https://doi.org/10.1039/b416831c.

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Ma J, Ma Z. Synthesis of gold nanostars with tunable morphology and their electrochemical application for hydrogen peroxide sensing. Electrochim Acta. 2013;108:435–40. https://doi.org/10.1016/j.electacta.2013.06.141.

    Article  CAS  Google Scholar 

  24. Dutta S, Strack G, Kurup P. Gold nanostar electrodes for heavy metal detection. Sensor Actuat B-Chem. 2019;281:383–91. https://doi.org/10.1016/j.snb.2018.10.111.

    Article  CAS  Google Scholar 

  25. Ruecha N, Rodthongkum N, Cate DM, Volckens J, Chailapakul O, Henry CS. Sensitive electrochemical sensor using a graphene-polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Anal Chim Acta. 2015;874:40–8. https://doi.org/10.1016/j.aca.2015.02.064.

    Article  CAS  PubMed  Google Scholar 

  26. Mafa PJ, Idris AO, Mabuba N, Arotiba OA. Electrochemical co-detection of As(III), Hg(II) and Pb(II) on a bismuth modified exfoliated graphite electrode. Talanta. 2016;153:99–106. https://doi.org/10.1016/j.talanta.2016.03.003.

    Article  CAS  PubMed  Google Scholar 

  27. Lu Y, Liang X, Xu J, Zhao Z, Tian G. Synthesis of CuZrO3 nanocomposites/graphene and their application in modified electrodes for the co-detection of trace Pb(II) and Cd(II). Sensor Actuat B-Chem. 2018;273:1146–55. https://doi.org/10.1016/j.snb.2018.06.104.

    Article  CAS  Google Scholar 

  28. Bonfil Y, Kirowa-Eisner E. Determination of nanomolar concentrations of lead and cadmium by anodic-strip** voltammetry at the silver electrode. Anal Chim Acta. 2002;457:285–96. https://doi.org/10.1016/s0003-2670(02)00016-8.

  29. Fischer E, van den Berg CMG. Anodic strip** voltammetry of lead and cadmium using a mercury film electrode and thiocyanate. Anal Chim Acta. 1999;385:273–80. https://doi.org/10.1016/s0003-2670(98)00582-0.

    Article  CAS  Google Scholar 

  30. Armstrong KC, Tatum CE, Dansby-Sparks RN, Chambers JQ, Xue ZL. Individual and simultaneous determination of lead, cadmium, and zinc by anodic strip** voltammetry at a bismuth bulk electrode. Talanta. 2010;82:675–80. https://doi.org/10.1016/j.talanta.2010.05.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kopanica M, Novotný L. Determination of traces of arsenic(III) by anodic strip** voltammetry in solutions, natural waters and biological material. Anal Chim Acta. 1998;368:211–8. https://doi.org/10.1016/s0003-2670(98)00220-7\.

  32. ** voltammetry. Anal Chim Acta. 2008;620:44–9. https://doi.org/10.1016/j.aca.2008.05.015.

    Article  CAS  PubMed  Google Scholar 

  33. Dai X, Nekrassova O, Hyde ME, Compton RG. Anodic strip** voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem. 2004;76:5924–9. https://doi.org/10.1021/ac049232x.

    Article  CAS  PubMed  Google Scholar 

  34. Hamilton TW, Ellis J, Florence TM. Determination of selenium and tellurium in electrolytic copper by anodic strip** voltammetry at a gold film electrode. Anal Chim Acta. 1979;110:87–94. https://doi.org/10.1016/s0003-2670(01)83533-9.

    Article  CAS  Google Scholar 

  35. Bryce DW, Izquierdo A, De Castro MDL. Flow-injection anodic strip** voltammetry at a gold electrode for selenium(IV) determination. Anal Chim Acta. 1995;308:96–101. https://doi.org/10.1016/0003-2670(94)00626-w.

    Article  CAS  Google Scholar 

  36. Britton HTS, Robinson RA. CXCVIII.—Universal buffer solutions and the dissociation constant of veronal. Journal of the Chemical Society(Resumed). 1931:1456–62.

  37. Yilmaz B, Kaban S. Electrochemical behavior of atorvastatin at glassy carbon electrode and its direct determination in pharmaceutical preparations by square wave and differential pulse voltammetry. Indian J Pharm Sci. 2016;78. https://doi.org/10.4172/pharmaceutical-sciences.1000126.

  38. Süslü I, Altınöz SJ. Electrochemical behavior of quinapril and its determination in pharmaceutical formulations by square-wave voltammetry at a mercury electrode. Pharmazie. 2008;63:428–33. https://doi.org/10.1691/ph.2008.7387.

    Article  CAS  PubMed  Google Scholar 

  39. Ozkorucuklu SP, Sahin Y, Alsancak G. Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors (Basel). 2008;8:8463–78. https://doi.org/10.3390/s8128463.

    Article  CAS  Google Scholar 

  40. Yang C. Voltammetric determination of tinidazole using a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Sci. 2004;20:821–4. https://doi.org/10.2116/analsci.20.821.

    Article  CAS  PubMed  Google Scholar 

  41. Chapin RE, Ku WW. The reproductive toxicity of boric acid. Environ Health Perspect. 1994;102(Suppl 7):87–91. https://doi.org/10.1289/ehp.94102s787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E. 2010;42:1417–24. https://doi.org/10.1016/j.physe.2009.11.081.

    Article  CAS  Google Scholar 

  43. Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathmaniKanth S, Kartikeyan B, et al. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B: Biointerfaces. 2010;77:257–62. https://doi.org/10.1016/j.colsurfb.2010.02.007.

    Article  CAS  PubMed  Google Scholar 

  44. Panicker CY, Varghese HT, Philip D, Nogueira HI. FT-IR, FT-Raman and SERS spectra of pyridine-3-sulfonic acid. Spectrochim Acta A Mol Biomol Spectrosc. 2006;64:744–7. https://doi.org/10.1016/j.saa.2005.06.048.

    Article  CAS  PubMed  Google Scholar 

  45. Philip D, Eapen A, Aruldhas G. Vibrational and surface enhanced Raman scattering spectra of sulfamic acid. J Solid State Chem. 1995;116:217–23. https://doi.org/10.1006/jssc.1995.1206.

    Article  CAS  Google Scholar 

  46. Philip D. Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2009;73:650–3. https://doi.org/10.1016/j.saa.2009.03.007.

    Article  CAS  PubMed  Google Scholar 

  47. Smitha SL, Philip D, Gopchandran KG. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim Acta A Mol Biomol Spectrosc. 2009;74:735–9. https://doi.org/10.1016/j.saa.2009.08.007.

    Article  CAS  PubMed  Google Scholar 

  48. Philip D. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim Acta A Mol Biomol Spectrosc. 2010;77:807–10. https://doi.org/10.1016/j.saa.2010.08.008.

    Article  CAS  PubMed  Google Scholar 

  49. Lether FG, Wenston PR. An algorithm for the numerical evaluation of the reversible Randles-Sevcik function. Comput Chem. 1987;11:179–83. https://doi.org/10.1016/0097-8485(87)80016-5.

    Article  Google Scholar 

  50. Frankenthal RP. The anodic corrosion of gold in concentrated chloride solutions. J Electrochem Soc. 1982;129. https://doi.org/10.1149/1.2124085.

  51. Cadle SH, Bruckenstein S. A ring-disk study of the effect of trace chloride ion on the anodic behavior of gold in 0.2 M H2SO4. J Electroanal Chem Interfacial Electrochem. 1973;48:325–31. https://doi.org/10.1016/s0022-0728(73)80365-1.

    Article  CAS  Google Scholar 

  52. Xu X, Duan G, Li Y, Liu G, Wang J, Zhang H, et al. Fabrication of gold nanoparticles by laser ablation in liquid and their application for simultaneous electrochemical detection of Cd2+, Pb2+, Cu2+, Hg2+. ACS Appl Mater Interfaces. 2014;6:65–71. https://doi.org/10.1021/am404816e.

    Article  CAS  PubMed  Google Scholar 

  53. Jacobs ES. Anodic strip** voltammetry of gold and silver with carbon paste electrodes. Anal Chem. 1963;35:2112–5. https://doi.org/10.1021/ac60206a037.

    Article  CAS  Google Scholar 

  54. Wei Y, Gao C, Meng F-L, Li H-H, Wang L, Liu J-H, et al. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J Phys Chem C. 2011;116:1034–41. https://doi.org/10.1021/jp209805c.

    Article  CAS  Google Scholar 

  55. Arsenic. Antimony and Bismuth. In: Greenwood NN, Earnshaw A, editors. Chemistry of the elements. Oxford: Butterworth-Heinemann; 1997. p. 547–99.

    Google Scholar 

  56. Welch AH, Helsel DR, Focazio MJ, Watkins SA. Arsenic in ground water supplies of the United States. In: Chappell WR, Abernathy CO, Calderon RL, editors. Arsenic exposure and health effects III. Oxford: Elsevier Science Ltd; 1999. p. 9–17.

    Chapter  Google Scholar 

  57. Williamson JE, Carter JM. Water-Quality Characteristics in the Black Hills Area, South Dakota Water-Resources Investigations Report 01-4194. US Geological Survey, South Dakota Department of Environment and Natural Resources, West Dakota Water Development District. 2001.

  58. Groschen GE, Arnold TL, Morrow WS, Warner KL. Occurrence and distribution of iron, manganese, and selected trace elements in ground water in the glacial aquifer system of the Northern United States. Geological Survey: U. S; 2009.

    Book  Google Scholar 

  59. Anawar HM, Akai J, Komaki K, Terao H, Yoshioka T, Ishizuka T, et al. Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. J Geochem Explor. 2003;77:109–31. https://doi.org/10.1016/s0375-6742(02)00273-x.

    Article  CAS  Google Scholar 

  60. EPA, SESD Operating Procedure, Surface water sampling, 2013.

    Google Scholar 

  61. Zhu L, Xu L, Huang B, Jia N, Tan L, Yao S. Simultaneous determination of Cd(II) and Pb(II) using square wave anodic strip** voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode. Electrochim Acta. 2014;115:471–7. https://doi.org/10.1016/j.electacta.2013.10.209.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the U.S. Army Combat Capabilities Development Command – Soldier Center (Contract No. W911QY-17-2-0004) and the U.S. National Science Foundation Grant No. 1543042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Kurup.

Ethics declarations

No informed consent, human participants, and animals applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

Any opinions, findings, and conclusions or recommendations expressed in this manuscript are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Additional information

Distribution statement

This article has been approved for public release by the Public Affairs Office at the U.S. Army Combat Capabilities Development Command – Soldier Center (PAO No. U19-1565).

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Sullivan, C., Brack, E.M. et al. Simultaneous voltammetric detection of cadmium(II), arsenic(III), and selenium(IV) using gold nanostar–modified screen-printed carbon electrodes and modified Britton-Robinson buffer. Anal Bioanal Chem 412, 4113–4125 (2020). https://doi.org/10.1007/s00216-020-02642-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02642-4

Keywords

Navigation