Log in

Ultrasensitive dual-color rapid lateral flow immunoassay via gold nanoparticles with two different morphologies for the serodiagnosis of human brucellosis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lateral flow immunoassays (LFIAs) are popular because they are rapid, convenient, stable, low cost, and easy to read. However, conventional LFIAs based on gold nanoparticles lack sensitivity, which hinders their widespread use. Here, we prepared durian-like gold nanoparticles (GNDs) and labeled them with staphylococcal protein A to detect brucella antibody. Then, the analytical performances of GNDs and gold nanospheres (GNSs) with the same diameter were compared. It was found that the sensitivity of GNDs was five to ten times higher than that of GNSs. The nonspherical morphologies of the nanoparticles greatly increased the sensitivity of the LFIA. On the basis of GNDs and GNSs, we developed an ultrasensitive dual-color brucellosis LFIA. GNSs labeled with streptavidin were used to demonstrate the control line. This dual-color LFIA had a diagnostic sensitivity and specificity of 100%. Human standard Brucella-positive serum (containing brucella antibody at 4000 IU/mL) could be detected in this system even for a dilution factor of 10−5. The detection limit was 0.04 IU/mL. This is two orders of magnitude better than conventional LFIA strips (detection limit 4 IU/mL). This dual-color LFIA contains all components of a conventional LFIA with no additional processing steps or reagents. It can detect antibodies in serum, plasma, and even whole blood without sample pretreatment or blood filtration pads. Both types of nanoparticles were synthesized in a simple and low-cost manner. This suggests that it will have utility for the early diagnosis of brucellosis and other diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Corbel MJ. Brucellosis in humans and animals. Geneva: World Health Organization; 2006.

    Google Scholar 

  2. Galińska EM, Zagórski J. Brucellosis in humans – etiology, diagnostics, clinical forms. Ann Agric Environ Med. 2013;20:233–8.

    PubMed  Google Scholar 

  3. WHO's first ever global estimates of foodborne diseases and children under 5 account for almost one third of deaths. World Health Organization. https://www.who.int/en/news-room/detail/03-12-2015-who-s-first-ever-global-estimates-of-foodborne-diseases-find-children-under-5-account-for-almostone-third-of-deaths.

  4. Mirnejad R, Mohamadi M, Piranfar V, Mortazavi SM, Kachuei R. A duplex PCR for rapid and simultaneous detection of Brucella spp. in human blood samples. Asian Pac J Trop Med. 2013;6:453–6. https://doi.org/10.1016/S1995-7645(13)60073-5.

    Article  CAS  PubMed  Google Scholar 

  5. Oomen LJ, Waghela S. The rose bengal plate test in human brucellosis. Trop Geogr Med. 1974;26:300–2.

    CAS  PubMed  Google Scholar 

  6. Singh BB, Kostoulas P, Gill JPS, Dhand NK. Cost-benefit analysis of intervention policies for prevention and control of brucellosis in India. PLoS Negl Trop Dis. 2018;12:0006488. https://doi.org/10.1371/journal.pntd.0006488.

    Article  Google Scholar 

  7. Keid LB, Soares RM, Vasconcellos SA, Megid J, Salgado VR, Richtzenhain LJ. Comparison of agar gel immunodiffusion test, rapid slide agglutination test, microbiological culture and PCR for the diagnosis of canine brucellosis. Res Vet Sci. 2009;86:22–6. https://doi.org/10.1016/j.rvsc.2008.05.012.

    Article  CAS  PubMed  Google Scholar 

  8. López-Marzo AM, Pons J, Blake DA, Merkoçi A. High sensitive gold-nanoparticle based lateral flow immunodevice for Cd2+ detection in drinking waters. Biosens Bioelectron. 2013;47:190–8. https://doi.org/10.1016/j.bios.2013.02.031.

    Article  CAS  PubMed  Google Scholar 

  9. Quesada-González D, Merkoçi A. Nanoparticle-based lateral flow biosensors. Biosens Bioelectron. 2015;73:47–63. https://doi.org/10.1016/j.bios.2015.05.050.

    Article  CAS  PubMed  Google Scholar 

  10. Posthuma-Trumpie GA, Korf J, Van Amerongen A. Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393:569–82. https://doi.org/10.1007/s00216-008-2287-2.

    Article  CAS  PubMed  Google Scholar 

  11. Leuvering JHW, Thal PJ, Van der Waart MV, Schuurs AHWM, Thai PJHM, Van der Waart MV, et al. Sol particle immunoassay (SPIA). J Immunoassay. 1980;1:77–91. https://doi.org/10.1080/01971528008055777.

    Article  CAS  PubMed  Google Scholar 

  12. Genç O, Büyüktanir Ö, Yurdusev N. Rapid immunofiltration assay based on colloidal gold-protein G conjugate as an alternative screening test for bovine and ovine brucellosis. Trop Anim Health Prod. 2012;44:213–5. https://doi.org/10.1007/s11250-011-0019-7.

    Article  PubMed  Google Scholar 

  13. Smits HL, Abdoel TH, Solera J, Clavijo E, Díaz R. Immunochromatographic Brucella-specific immunoglobulin M and G lateral flow assays for rapid serodiagnosis of human brucellosis. Clin Diagn Lab Immunol. 2003;10:1141–6. https://doi.org/10.1128/CDLI.10.6.1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sotnikov DV, Byzova NA, Zherdev AV, Eskendirova SZ, Baltin KK, Mukanov KK, et al. Express immunochromatographic detection of antibodies against Brucella abortus in cattle sera based on quantitative photometric registration and modulated cut-off level. J Immunoassay Immunochem. 2015;36:80–90. https://doi.org/10.1080/15321819.2014.896266.

    Article  CAS  PubMed  Google Scholar 

  15. Ji Y, Ren M, Li Y, Huang Z, Shu M, Yang H, et al. Detection of aflatoxin B1 with immunochromatographic test strips: enhanced signal sensitivity using gold nanoflowers. Talanta. 2015;142:206–12. https://doi.org/10.1016/j.talanta.2015.04.048.

    Article  CAS  PubMed  Google Scholar 

  16. Di Nardo F, Baggiani C, Giovannoli C, Spano G, Anfossi L. Multicolor immunochromatographic strip test based on gold nanoparticles for the determination of aflatoxin B1 and fumonisins. Microchim Acta. 2017;184:1295–304. https://doi.org/10.1007/s00604-017-2121-7.

    Article  CAS  Google Scholar 

  17. Petrakova AV, Urusov AE, Zherdev AV, Dzantiev BB. Gold nanoparticles of different shape for bicolor lateral flow test. Anal Biochem. 2019;568:7–13. https://doi.org/10.1016/j.ab.2018.12.015.

    Article  CAS  PubMed  Google Scholar 

  18. Serebrennikova K, Samsonova J, Osipov A. Hierarchical nanogold labels to improve the sensitivity of lateral flow immunoassay. Nano-Micro Lett. 2018;10:24. https://doi.org/10.1007/s40820-017-0180-2.

    Article  CAS  Google Scholar 

  19. Sotnikov DV, Berlina AN, Zherdev AV, Eskendirova SZ, Mukanov KK, Ramankulov YM, et al. Immunochromatographic serodiagnosis of brucellosis in cattle using gold nanoparticles and quantum dots. Inter J Vet Sci. 2019;8(1):28–34.

    Google Scholar 

  20. Maiorano G, Rizzello L, Malvindi MA, Shankar SS, Martiradonna L, Falqui A, et al. Monodispersed and size-controlled multibranched gold nanoparticles with nanoscale tuning of surface morphology. Nanoscale. 2011;3:2227–32. https://doi.org/10.1039/c1nr10107b.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao L, Ji X, Sun X, Li J, Yang W, Peng X. Formation and stability of gold nanoflowers by the seeding approach: the effect of intraparticle ripening. J Phys Chem C. 2009;113:16645–51. https://doi.org/10.1021/jp9058406.

    Article  CAS  Google Scholar 

  22. Bechelany M, Brodard P, Elias J, Brioude A, Michler J, Philippe L. The synthesis of SERS-active gold nanoflower tags for in vivo applications. Phys Rev Lett. 2010;26:1031–3. https://doi.org/10.1021/la1016356.

    Article  CAS  Google Scholar 

  23. **e J, Lee JY, Wang DIC. Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution. Chem Mater. 2007;19:2823–30. https://doi.org/10.1021/cm0700100.

    Article  CAS  Google Scholar 

  24. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241:20–2. https://doi.org/10.1038/physci241020a0.

    Article  CAS  Google Scholar 

  25. Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75. https://doi.org/10.1039/DF9511100055.

    Article  Google Scholar 

  26. Bastús NG, Comenge J, Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir. 2011;27:11098–105. https://doi.org/10.1021/la201938u.

    Article  CAS  PubMed  Google Scholar 

  27. Aramesh M, Shimoni O, Ostrikov K, Prawer S, Cervenka J. Surface charge effects in protein adsorption on nanodiamonds. Nanoscale. 2015;7:5726–36. https://doi.org/10.1039/c5nr00250h.

    Article  CAS  PubMed  Google Scholar 

  28. Wang R, Chen L, Li D, Liu R, Ge G. Concurrent detection of protein adsorption on mixed nanoparticles by differential centrifugal sedimentation. Part Part Syst Charact. 2017;34:1–5. https://doi.org/10.1002/ppsc.201700134.

    Article  CAS  Google Scholar 

  29. Ouyang H, Lu Q, Wang W, Song Y, Tu X, Zhu C, et al. Dual-readout immunochromatographic assay by utilizing MnO2 nanoflowers as the unique colorimetric/chemiluminescent probe. Anal Chem. 2018;90:5147–52. https://doi.org/10.1021/acs.analchem.7b05247.

    Article  CAS  PubMed  Google Scholar 

  30. Ganeshchandra S, Keishiro Tomodaa KM. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B. 2008;29:205–15. https://doi.org/10.3233/BME-171723.

    Article  CAS  Google Scholar 

  31. Li J, Wu J, Zhang X, Liu Y, Zhou D, Sun H, et al. Controllable synthesis of stable urchin-like gold nanoparticles using hydroquinone to tune the reactivity of gold chloride. J Phys Chem C. 2011;115:3630–7. https://doi.org/10.1021/jp1119074.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31360226). We acknowledge Shihezi University School of Medicine for the clinical samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shi.

Ethics declarations

This study was performed in strict accordance with the Laboratory Animal Guideline for Ethical Review of Animal Welfare (GB/T 35892-2018), and was approved by the Laboratory Animal Ethics Committee in the School of Medicine of Shihezi University (Shihezi, China). For all experiments conducted with patient serum, informed consent was obtained and approval was granted by the Medical Ethics Committee of the First Affiliated Hospital, Shihezi University School of Medicine (Shihezi, China).

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Zhang, J., Cao, J. et al. Ultrasensitive dual-color rapid lateral flow immunoassay via gold nanoparticles with two different morphologies for the serodiagnosis of human brucellosis. Anal Bioanal Chem 411, 8033–8042 (2019). https://doi.org/10.1007/s00216-019-02156-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02156-8

Keywords

Navigation