Log in

Monocrotophos detection with a bienzyme biosensor based on ionic-liquid-modified carbon nanotubes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE) biosensor technology is widely applied in the detection of organophosphate pesticides in agricultural production via the inhibition of AChE activity by organophosphates. However, the AChE electrode has some drawbacks, such as low stability and high overpotential. Combining the advantages of multiwalled carbon nanotubes (MWCNTs) and ionic liquids, we constructed a novel bienzyme electrode [Cl/iron porphyrin (FePP)-modified MWCNTs/AChE/glassy carbon electrode], which included AChE and mimetic oxidase FePP. In this electrode, FePP is covalently bound to the AChE carrier via ionic liquid for increased electrode sensitivity and stability. Under optimal conditions, this novel biosensor has a monocrotophos detection limit of 3.2 × 10–11 mol/L and good recovery of 89–104%. After 5 weeks of storage at 4 °C, the oxidation current was 97.8% of its original value. The biosensor has high stability and sensitivity for monocrotophos detection and is a promising device for monitoring food safety.

The complete synthesis process of Cl/FePP–MWCNTs/AChE/GCE

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tan MJ, Hong ZY, Chang MH, Liu CC, Cheng HF, Loh XJ. Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides. Biosens Bioelectron. 2017;96:167–72.

    Article  CAS  Google Scholar 

  2. Mendieta-Reyes NE, Díaz-García AK, Gómez R. Simultaneous electrocatalytic CO2 reduction and enhanced electrochromic effect at WO3 nanostructured electrodes in acetonitrile. ACS Catal. 2018;8:1903–12.

    Article  CAS  Google Scholar 

  3. Ragno D, Carmine GD, Brandolese A, Bortolini O, Giovannini PP, Massi A. Immobilization of privileged triazolium carbene catalyst for batch and flow stereoselective umpolung processes. ACS Catal. 2017;7:6365–75.

    Article  CAS  Google Scholar 

  4. Gong J, Wang X, Li X, Wang K. Highly sensitive visible light activated photoelectrochemical biosensing of organophosphate pesticide using biofunctional crossed bismuth oxyiodide flake arrays. Biosens Bioelectron. 2012;38:43–9.

    Article  CAS  PubMed  Google Scholar 

  5. Cui HF, Wu WW, Li MM, Song X, Lv Y, Zhang TT. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens Bioelectron. 2018;99:223–9.

    Article  CAS  PubMed  Google Scholar 

  6. Sgobbi LF, Sas M. Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosens Bioelectron. 2017;100:290–7.

    Article  CAS  PubMed  Google Scholar 

  7. Zheng Q, Yu Y, Fan K, Ji F, Wu J, Ying Y. A nano-silver enzyme electrode for organophosphorus pesticide detection. Anal Bioanal Chem. 2016;408:1–9.

    Article  CAS  Google Scholar 

  8. Tran T, Mulchandani A. Carbon nanotubes and graphene nano field-effect transistor-based biosensors. Trends Anal Chem. 2016;79:222–32.

    Article  CAS  Google Scholar 

  9. Ahmad R, Khare SK. Immobilization of aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresour Technol. 2017;252:72–5.

    Article  CAS  PubMed  Google Scholar 

  10. Neto SA, Silva RGD, Milton RD, Minteer SD, Andrade ARD. Hybrid bioelectrocatalytic reduction of oxygen at anthracene-modified multi-walled carbon nanotubes decorated with Ni90Pd10 nanoparticles. Electrochim Acta. 2017;251:195–202.

    Article  CAS  Google Scholar 

  11. Giroud F, Sawada K, Taya M, Cosnier S. 5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O2 biofuel cells. Biosens Bioelectron. 2017;87:957–63.

    Article  CAS  PubMed  Google Scholar 

  12. Chen B, Wang Y, Li C, Fu L, Liu X, Zhu Y. A Cr2O3/MWCNTs composite as a superior electrode material for supercapacitor. RSC Adv. 2017;7:25019–24.

    Article  CAS  Google Scholar 

  13. Kaur N, Thakur H, Prabhakar N. Conducting polymer and multi-walled carbon nanotubes nanocomposites based amperometric biosensor for detection of organophosphate. J Electroanal Chem. 2016;775:121–8.

    Article  CAS  Google Scholar 

  14. Yu G, Wu W, Zhao Q, Wei X, Lu Q. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosens Bioelectron. 2015;68:288–94.

    Article  CAS  Google Scholar 

  15. Manoj D, Theyagarajan K, Saravanakumar D, Senthilkumar S, Thenmozhi K. Aldehyde functionalized ionic liquid on electrochemically reduced graphene oxide as a versatile platform for covalent immobilization of biomolecules and biosensing. Biosens Bioelectron. 2018;103:104–12.

    Article  CAS  PubMed  Google Scholar 

  16. Gholivand MB, Karimian N, Torkashvand M. A highly sensitive electrochemical OPs biosensor based on electrodeposition of Au–Pd bimetallic nanoparticle onto functionalized graphene modified glassy carbon electrode. Anal Methods. 2015;7:3903–11.

    Article  CAS  Google Scholar 

  17. Horiuchi T, Torimitsu K, Yamamoto K, Niwa O. On-line flow sensor for measuring acetylcholine combined with microdialysis sampling probe. Electroanalysis. 2010;9:912–6.

    Article  Google Scholar 

  18. Zhou Y, Huang X, Zhang W, Ji Y, Chen R, **ong Y. Multi-branched gold nanoflower-embedded iron porphyrin for colorimetric immunosensor. Biosens Bioelectron. 2017;102:9–16.

    Article  CAS  PubMed  Google Scholar 

  19. Ji HB, Yuan QL, Zhou XT, Pei LX, Wang LF. Highly efficient selective oxidation of alcohols to carbonyl compounds catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen. Bioorg Med Chem Lett. 2007;17:6364–8.

  20. Ren TZ, Yuan ZY, Su BL. Encapsulation of direct blue dye into mesoporous silica-based materials. Colloids Surf A Physicochem Eng Asp. 2007;300:79–87.

    Article  CAS  Google Scholar 

  21. Carrasco PM, Montes S, García I, Borghei M, Jiang H, Odriozola I. High-concentration aqueous dispersions of graphene produced by exfoliation of graphite using cellulose nanocrystals. Carbon. 2014;70:157–63.

    Article  CAS  Google Scholar 

  22. Gao L, Deng K, Zheng J, Liu B, Zhang Z. Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin. Chem Eng J. 2015;270:444–9.

    Article  CAS  Google Scholar 

  23. Cui HF, Wu WW, Li MM, Song X, Lv Y, Zhang TT. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens Bioelectron. 2017;99:223–9.

    Article  CAS  PubMed  Google Scholar 

  24. Bidari A, Ganjali MR, Norouzi P. Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid-liquid microextraction. Food Chem. 2011;126:1840–4.

    Article  CAS  PubMed  Google Scholar 

  25. Wang F, Ma S, Si Y, Dong L, Wang X. Interaction mechanisms of antibiotic sulfamethoxazole with various graphene-based materials and multiwall carbon nanotubes and the effect of humic acid in water. Carbon. 2017;114:671–8.

    Article  CAS  Google Scholar 

  26. Uwimbabazi E, Mukasekuru MR, Sun X. Glucose biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes-chitosan for the determination of beef freshness. Food Anal Methods. 2017;10:1–10.

    Article  Google Scholar 

  27. Rahmanian R, Mozaffari SA, Amoli HS, Abedi M. Development of sensitive impedimetric urea biosensor using DC sputtered nano-ZnO on TiO2 thin film as a novel hierarchical nanostructure transducer. Sensors Actuators B Chem. 2017;256:760–74.

    Article  CAS  Google Scholar 

  28. Lu L, Huang X, Qu Y. Improvement of carbon paste-based enzyme electrode using a new ionic liquid [Pmim][PF6] as the binder. J Solid State Electrochem. 2012;16:3299–305.

    Article  CAS  Google Scholar 

  29. Fan Y, Hu G, Zhang T, Dong X, Zhong Y, Li X. Determination of glucose in food by the ionic liquid and carbon nanotubes modified dual-enzymatic sensors. Food Anal Methods. 2016;9:2491–500.

    Article  Google Scholar 

  30. Zhou L, Zhang X, Ma L. Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection. Biochem Eng J. 2017;128:243–249.

  31. Santos CS, Pawlak V, Fujiwara ST. Acetylcholinesterase biosensor based on Paman self-assembled monolayer-modified gold electrode, ECS Meeting. (2014);433. http://ma.ecsdl.org/content/MA2014-01/5/433.abstract. Accessed 1 May 2014

  32. Dong J, Wang X, Qiao F, Liu P, Ai S. Highly sensitive electrochemical strip** analysis of methyl parathion at MWCNTs–CeO2–Au nanocomposite modified electrode. Sensors Actuators B Chem. 2013;186:774–80.

    Article  CAS  Google Scholar 

  33. Wei M, Feng S. Amperometric determination of organophosphate pesticides using a acetylcholinesterase based biosensor made from nitrogen-doped porous carbon deposited on a boron-doped diamond electrode. Microchim Acta. 2017;184:3461–8.

    Article  CAS  Google Scholar 

  34. Zheng Y, Liu Z, **g Y, Li J, Zhan H. An acetylcholinesterase biosensor based on ionic liquid functionalized graphene–gelatin-modified electrode for sensitive detection of pesticides. Sensors Actuators B Chem. 2015;210:389–97.

    Article  CAS  Google Scholar 

  35. Dimcheva N, Horozova E, Ivanov Y. Self-assembly of acetylcholinesterase on gold nanoparticles electrodeposited on graphite. Cent Eur J Chem. 2013;11:1740–8.

    CAS  Google Scholar 

  36. Long Q, Li H, Zhang Y, Yao S. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosens Bioelectron. 2015;68:168–74.

    Article  CAS  PubMed  Google Scholar 

  37. Kaur B, Srivastava R, Satpati B. Nanocrystalline titanosilicate–acetylcholinesterase electrochemical biosensor for the ultra-trace detection of toxic organophosphate pesticides. Chemelectrochem. 2015;2:1164–73.

    Article  CAS  Google Scholar 

  38. Sundarmurugasan R, Gumpu MB, Ramachandra B. Simultaneous detection of monocrotophos and dichlorvos in orange samples using acetylcholinesterase–zinc oxide modified platinum electrode with linear regression calibration. Sensors Actuators B Chem. 2016;230:306–13.

    Article  CAS  Google Scholar 

  39. Zhao H, Ji X, Wang B. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens Bioelectron. 2015;65:23–30.

    Article  CAS  PubMed  Google Scholar 

  40. Ma L, Zhou L, He Y. Hierarchical nanocomposites with an N-doped carbon shell and bimetal core: novel enzyme nanocarriers for electrochemical pesticide detection. Biosens Bioelectron. 2018;121:166–73.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Q, Xu Q, Guo Y, Sun X, Wang X. Acetylcholinesterase biosensor based on the mesoporous carbon/ferroferric oxide modified electrode for detecting organophosphorus pesticides. RSC Adv. 2016;6:24698–703.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by the National Natural Science Foundation of China (no. 21406093), the Natural Science Foundation of Jiangsu Province (no. BK20140529), the Key University Science Research Project of Jiangsu Province (no. 14KJB530001), the China Postdoctoral Science Foundation (no. 2014M550271), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zou or Jiaojiao **a.

Ethics declarations

Conflict of interest

The authors declare no that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 896 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, B., Chu, Y. & **a, J. Monocrotophos detection with a bienzyme biosensor based on ionic-liquid-modified carbon nanotubes. Anal Bioanal Chem 411, 2905–2914 (2019). https://doi.org/10.1007/s00216-019-01743-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01743-z

Keywords

Navigation