Log in

Carboxyl Fe3O4 magnetic nanoparticle-based SPE and HPLC method for the determination of six tetracyclines in water

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel carboxyl Fe3O4 magnetic nanoparticle-based solid-phase extraction combined with high-performance liquid chromatography was developed for the analysis of oxytetracycline, tetracycline, demeclocycline, metacycline, chlortetracycline, and doxycycline in water samples. Driven by the electrostatic interaction and the strong chelation between tetracyclines and iron ions, tetracyclines in samples were adsorbed onto the adsorbents. The adsorbed analytes were subsequently eluted with oxalic acid and separated with a C18 column under gradient condition with a mobile phase consisting of methanol, acetonitrile, and oxalic acid at a flow rate of 0.5 mL/min. The detection was performed at variable ultraviolet wavelengths. Under optimized conditions, the developed method gave an enrichment factor of 33.3, linearity ranges of 5.00–1000 μg/L, detection limits of (2.86–5.19) × 10-2 μg/L, quantification limits of (9.54–17.3) × 10-2 μg/L, recoveries of 76.2–98.0%, and intra- and inter-day RSDs of 0.132–15.5% and 2.28–14.5% for these tetracyclines. The established method was successfully applied for the determination of these six tetracyclines in tap water, river water, pond water, and lake water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karageorgou E, Armeni M, Moschou I, Samanidou V. Ultrasound-assisted dispersive extraction for the high pressure liquid chromatographic determination of tetracyclines residues in milk with diode array detection. Food Chem. 2014;150:328–34.

    Article  CAS  PubMed  Google Scholar 

  2. Yang X, Yang C, Yan X. Zeolite imidazolate framework-8 as sorbent for on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of tetracyclines in water and milk samples. J Chromatogr A. 2013;1304:28–33.

    Article  CAS  PubMed  Google Scholar 

  3. West BM, Liggit P, Clemans DL, Francoeur SN. Antibiotic resistance, gene transfer, and water quality patterns observed in waterways near CAFO farms and wastewater treatment facilities. Water Air Soil Poll. 2011;217(1-4):473–89.

    Article  CAS  Google Scholar 

  4. US Environmental Protection Agency. Method (1694) Pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS. 2007; EPA-821-R-08-002

  5. Pulicharla R, Hegde K, Brar SK, Surampalli RY. Tetracyclines metal complexation: significance and fate of mutual existence in the environment. Environ Pollut. 2017;221:1–14.

    Article  CAS  PubMed  Google Scholar 

  6. Lou J, Xu X, Gao Y, Zheng D, Wang J, Li Z. Preparation of magnetic activated carbon from waste rice husk for the determination of tetracycline antibiotics in water samples. RSC Adv. 2016;6:112166–74.

    Article  CAS  Google Scholar 

  7. Ibarra IS, Rodriguez JA, Miranda JM, Vega M, Barrado E. Magnetic solid phase extraction based on phenyl silica adsorbent for the determination of tetracyclines in milk samples by capillary electrophoresis. J Chromatogr A. 2011;1218:2196–202.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson CR, Rupp HS, Wu W. Complexities in tetracycline analysis—chemistry, matrix extraction, cleanup, and liquid chromatography. J Chromatogr A. 2005;1075:23–32.

    Article  CAS  PubMed  Google Scholar 

  9. Sun Y, Tian J, Wang L, Yan H, Qiao F, Qiao X. One pot synthesis of magnetic graphene/carbon nanotube composites as magnetic dispersive solid-phase extraction adsorbent for rapid determination of oxytetracycline in sewage water. J Chromatogr A. 2015;1422:53–9.

    Article  CAS  PubMed  Google Scholar 

  10. Oka H, Ito Y, Matsumoto H. Chromatographic analysis of tetracycline antibiotics in foods. J Chromatogr A. 2000:109–33.

  11. Wang H, Yao H, Sun P, Pei J, Li D, Huang CH. Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation. Chemosphere. 2015;119:1255–61.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou J, Xue X, Li Y, Zhang J, Chen F, Wu L, et al. Multiresidue determination of tetracycline antibiotics in propolis by using HPLC-UV detection with ultrasonic-assisted extraction and two-step solid phase extraction. Food Chem. 2009;115:1074–80.

    Article  CAS  Google Scholar 

  13. Pérez-Rodríguez M, Pellerano RG, Pezza L, Pezza HR. An overview of the main foodstuff sample preparation technologies for tetracycline residue determination. Talanta. 2018;182:1–21.

    Article  CAS  PubMed  Google Scholar 

  14. Ji L, Chen W, Duan L, Zhu D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol. 2009;43:2322–7.

    Article  CAS  PubMed  Google Scholar 

  15. Tsukamoto T, Yasuma M, Yamamoto A, Hirayama K, Kihou T, Kodama S, et al. Evaluation of sulfobetaine-type polymer resin as an SPE adsorbent in the analysis of trace tetracycline antibiotics in honey. J Sep Sci. 2009;32:3591–5.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Z, Liu H, Wu L, Lan H, Qu J. Preparation of amino-Fe(III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper. Chemosphere. 2015;138:625–32.

    Article  CAS  PubMed  Google Scholar 

  17. Yang X, Xu G, Yu H, Zhang Z. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal. Bioresource Technol. 2016;211:566–73.

    Article  CAS  Google Scholar 

  18. Bao X, Qiang Z, Ling W, Chang J. Sonohydrothermal synthesis of MFe2O4 magnetic nanoparticles for adsorptive removal of tetracyclines from water. Sep Purif Technol. 2013;117:104–10.

    Article  CAS  Google Scholar 

  19. Zhang D, Niu H, Zhang X, Meng Z, Cai Y. Strong adsorption of chlorotetracycline on magnetite nanoparticles. J Hazard Mater. 2011;192:1088–93.

    Article  CAS  PubMed  Google Scholar 

  20. Ghaemi M, Absalan G. Fast removal and determination of doxycycline in water samples and honey by Fe3O4 magnetic nanoparticles. J Iran Chem Soc. 2015;12:1–7.

    Article  CAS  Google Scholar 

  21. Zhou Q, Li Z, Shuang C, Li A, Zhang M, Wang M. Efficient removal of tetracycline by reusable magnetic microspheres with a high surface area. Chem Eng J. 2012;210:350–6.

    Article  CAS  Google Scholar 

  22. Ma Y, Zhou Q, Li A, Shuang C, Shi Q, Zhang M. Preparation of a novel magnetic microporous adsorbent and its adsorption behavior of p-nitrophenol and chlorotetracycline. J Hazard Mater. 2014;266:84–93.

    Article  CAS  PubMed  Google Scholar 

  23. Li B, Ma J, Zhou L, Qiu Y. Magnetic microsphere to remove tetracycline from water: adsorption, H2O2 oxidation and regeneration. Chem Eng J. 2017;330:191–201.

    Article  CAS  Google Scholar 

  24. Rodriguez JA, Espinosa J, Aguilar-Arteaga K, Ibarra IS, Miranda JM. Determination of tetracyclines in milk samples by magnetic solid phase extraction flow injection analysis. Microchim Acta. 2010;171:407–13.

    Article  CAS  Google Scholar 

  25. Zheng H, Mo J, Zhang Y, Gao Q, Ding J, Yu Q, et al. Facile synthesis of magnetic molecularly imprinted polymers and its application in magnetic solid phase extraction for fluoroquinolones in milk samples. J Chromatogr A. 2014;1329:17–23.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang B, Zhang H, Li X, Lei X, Li C, Yin D, et al. Synthesis of BSA/ Fe3O4 magnetic composite microspheres for adsorption of antibiotics. Mater Sci Eng C Mater Biol Appl. 2013;33:4401–8.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Q, Zheng Y, Zhong L, Cheng X. Removal of tetracycline from aqueous solution by a Fe3O4 incorporated pan electrospun nanofiber mat. J Environ Sci-China. 2015;28:29–36.

    Article  CAS  PubMed  Google Scholar 

  28. Ou J, Mei M, Xu X. Magnetic adsorbent constructed from the loading of amino functionalized Fe3O4 on coordination complex modified polyoxometalates nanoparticle and its tetracycline adsorption removal property study. J Solid State Chem. 2016;238:182–8.

    Article  CAS  Google Scholar 

  29. Li M, Liu Y, Zeng G, Liu S, Hu X, Shu D, et al. Tetracycline absorbed onto nitrilotriacetic acid-functionalized magnetic graphene oxide: influencing factors and uptake mechanism. J Colloid Interf Sci. 2017;485:269–79.

    Article  CAS  Google Scholar 

  30. Zhu X, Liu Y, Qian F, Zhou C, Zhang S, Chen J. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresource Technol. 2014;154:209–14.

    Article  CAS  Google Scholar 

  31. Chen A, Shang C, Shao J, Lin Y, Luo S, Zhang J, et al. Carbon disulfide-modified magnetic ion-imprinted chitosan-Fe(III): a novel adsorbent for simultaneous removal of tetracycline and cadmium. Carbohydr Polym. 2017;155:19–27.

    Article  CAS  PubMed  Google Scholar 

  32. Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, et al. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed Engl. 2009;48:5875–9.

    Article  CAS  PubMed  Google Scholar 

  33. Werner JJ, Arnold WA, McNeill K. Water hardness as a photochemical parameter: tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH. Environ Sci Technol. 2006;40:7236–41.

    Article  CAS  PubMed  Google Scholar 

  34. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed Engl. 2005;44:2782–5.

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Bao J, Wang L, Zhang F, Li Y. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem Eur J. 2006;12:6341–7.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng C, Wen Y, Xu X, Gu H. Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size. J Mater Chem A. 2009;19:8782–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities of China [grant number 2012017yjsy206].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjun Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 982 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yin, S., Yang, D. et al. Carboxyl Fe3O4 magnetic nanoparticle-based SPE and HPLC method for the determination of six tetracyclines in water. Anal Bioanal Chem 411, 507–515 (2019). https://doi.org/10.1007/s00216-018-1475-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1475-y

Keywords

Navigation