Log in

Fluorescent-protein-based probes: general principles and practices

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An important application of fluorescent proteins is to derive genetically encoded fluorescent probes that can actively respond to cellular dynamics such as pH change, redox signaling, calcium oscillation, enzyme activities, and membrane potential. Despite the large diverse group of fluorescent-protein-based probes, a few basic principles have been established and are shared by most of these probes. In this article, the focus is on these general principles and strategies that guide the development of fluorescent-protein-based probes. A few examples are provided in each category to illustrate the corresponding principles. Since these principles are quite straightforward, others may adapt them to create fluorescent probes for their own interest. Hopefully, the development of the ever-growing family of fluorescent-protein-based probes will no longer be limited to a small number of laboratories specialized in senor development, leading to the situation that biological studies will be bettered assisted by genetically encoded sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tsien RY (2009) Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew Chem Int Ed 48(31):5612–5626

    Article  CAS  Google Scholar 

  2. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175

    Article  CAS  Google Scholar 

  3. Patterson GH (2008) Photoactivation and imaging of photoactivatable fluorescent proteins. Curr Protoc Cell Biol 38:21.6

    Google Scholar 

  4. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from luminous hydromedusan, Aequorea. J Cell Comp Physiol 59(3):223–239

    Article  CAS  Google Scholar 

  5. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273(5280):1392–1395

    Article  CAS  Google Scholar 

  6. Ren W, Ai HW (2013) Genetically encoded fluorescent redox probes. Sensors 13(11):15422–15433

    Article  Google Scholar 

  7. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233

    Article  CAS  Google Scholar 

  8. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805

    Article  CAS  Google Scholar 

  9. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  10. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17(10):969–973

    Article  CAS  Google Scholar 

  11. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    Article  CAS  Google Scholar 

  12. Miyawaki A, Shcherbakova DM, Verkhusha VV (2012) Red fluorescent proteins: chromophore formation and cellular applications. Curr Opin Struct Biol 22(5):679–688

    Article  CAS  Google Scholar 

  13. Sparks JS, Schelly RC, Smith WL, Davis MP, Tchernov D, Pieribone VA, Gruber DF (2014) The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon. PLoS One 9(1):e83259

    Article  Google Scholar 

  14. Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32(9):407–414

    Article  CAS  Google Scholar 

  15. Kerppola TK (2009) Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation. Chem Soc Rev 38(10):2876–2886

    Article  CAS  Google Scholar 

  16. Chi KR (2009) Super-resolution microscopy: breaking the limits. Nat Methods 2009(6):15–18

    Article  Google Scholar 

  17. Zhou XX, Chung HK, Lam AJ, Lin MZ (2012) Optical control of protein activity by fluorescent protein domains. Science 338(6108):810–814

    Article  CAS  Google Scholar 

  18. Frommer WB, Davidson MW, Campbell RE (2009) Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38(10):2833–2841

    Article  CAS  Google Scholar 

  19. Harpur AG, Wouters FS, Bastiaens PI (2001) Imaging FRET between spectrally similar GFP molecules in single cells. Nat Biotechnol 19(2):167–169

    Article  CAS  Google Scholar 

  20. Hess ST, Heikal AA, Webb WW (2004) Fluorescence photoconversion kinetics in novel green fluorescent protein pH Sensors (pHluorins). J Phys Chem B 108(28):10138–10148

    Article  CAS  Google Scholar 

  21. Young B, Wightman R, Blanvillain R, Purcel SB, Gallois P (2010) pH-sensitivity of YFP provides an intracellular indicator of programmed cell death. Plant Methods 6:27

    Article  CAS  Google Scholar 

  22. Ostergaard H, Henriksen A, Hansen FG, Winther JR (2001) Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein. EMBO J 20(21):5853–5862

    Article  CAS  Google Scholar 

  23. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279(13):13044–13053

    Article  CAS  Google Scholar 

  24. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96(20):11241–11246

    Article  CAS  Google Scholar 

  25. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein: mechanism and applications. J Biol Chem 276(31):29188–29194

    Article  CAS  Google Scholar 

  26. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19(2):137–141

    Article  CAS  Google Scholar 

  27. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98(6):3197–3202

    Article  CAS  Google Scholar 

  28. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  Google Scholar 

  29. Muto A, Ohkura M, Abe G, Nakai J, Kawakami K (2013) Real-time visualization of neuronal activity during perception. Curr Biol 23(4):307–311

    Article  CAS  Google Scholar 

  30. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded Ca2+ indicators. Science 333(6051):1888–1891

    Article  CAS  Google Scholar 

  31. Ouyang M, Sun J, Chien S, Wang Y (2008) Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Proc Natl Acad Sci U S A 105(38):14353–14358

    Article  CAS  Google Scholar 

  32. Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, Matsuda M (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22(23):4647–4656

    Article  CAS  Google Scholar 

  33. Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9(10):1005–1012

    Article  CAS  Google Scholar 

  34. Kotera I, Iwasaki T, Imamura H, Noji H, Nagai T (2010) Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators. ACS Chem Biol 5(2):215–222

    Article  CAS  Google Scholar 

  35. Grunberg R, Burnier JV, Ferrar T, Beltran-Sastre V, Stricher F, van der Sloot AM, Garcia-Olivas R, Mallabiabarrena A, Sanjuan X, Zimmermann T, Serrano L (2013) Engineering of weak helper interactions for high-efficiency FRET probes. Nat Methods 10(10):1021–1027

    Article  Google Scholar 

  36. Campbell RE (2009) Fluorescent protein-based biosensors: modulation of energy transfer as a design principle. Anal Chem 81(15):5972–5979

    Article  CAS  Google Scholar 

  37. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887

    Article  CAS  Google Scholar 

  38. Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M, Matsu-ura T, Miyawaki A, Michikawa T, Mikoshiba K, Nagai T (2010) Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow cameleon-nano. Nat Methods 7(9):729–732

    Article  CAS  Google Scholar 

  39. Thestrup T, Litzlbauer J, Bartholomaus I, Mues M, Russo L, Dana H, Kovalchuk Y, Liang Y (2014) Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. 1 (2):175-182

  40. Alford SC, Abdelfattah AS, Ding Y, Campbell RE (2012) A fluorogenic red fluorescent protein heterodimer. Chem Biol 19(3):353–360

    Article  CAS  Google Scholar 

  41. Alford SC, Ding Y, Simmen T, Campbell RE (2012) Dimerization-dependent green and yellow fluorescent proteins. ACS Synth Biol 1(12):569–575

    Article  CAS  Google Scholar 

  42. Chen ZJ, Ren W, Wright QE, Ai HW (2013) Genetically encoded fluorescent probe for the selective detection of peroxynitrite. J Am Chem Soc 135(40):14940–14943

    Article  CAS  Google Scholar 

  43. Chen S, Chen ZJ, Ren W, Ai HW (2012) Reaction-based genetically encoded fluorescent hydrogen sulfide sensors. J Am Chem Soc 134(23):9589–9592

    Article  CAS  Google Scholar 

  44. Chu J, Haynes RD, Corbel SY, Li P, Gonzalez-Gonzalez E, Burg JS, Ataie NJ, Lam AJ, Cranfill PJ, Baird MA, Davidson MW, Ng HL, Garcia KC, Contag CH (2014) Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat Methods 11(5):572–578

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I acknowledge support from the University of California, Riverside and the National Science Foundation for grant CHE-1351933.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-wang Ai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Hw. Fluorescent-protein-based probes: general principles and practices. Anal Bioanal Chem 407, 9–15 (2015). https://doi.org/10.1007/s00216-014-8236-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8236-3

Keywords

Navigation