Log in

Preparation and evaluation of monolithic poly(N-vinylcarbazole-co-1,4-divinylbenzene) capillary columns for the separation of small molecules

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Short-term polymerization or the so-called low-conversion polymerization was applied for the preparation of N-vinylcarbazole (NVC) and 1,4-divinylbenzene (DVB) monolithic capillary columns. The synthesis was carried out by thermally initiated free radical copolymerization under the influence of inert micro- (toluene) and macroporogen (1-decanol) and α,α′-azoisobutyronitrile (AIBN) as radical initiator. The morphological and porous properties were studied by scanning electron microscopy (SEM), nitrogen adsorption, and mercury intrusion porosimetry (MIP). The copolymerization process was studied by monomer conversion measurements. This approach led to increased porosity and specific surface area. A specific surface area above 400 m2/g of the monolith and a distinct bimodal pore size distribution were obtained. The chromatographic performance was determined in terms of theoretical plate heights and number of theoretical plates. The lowest plate height value was found to be 3.9 μm (corresponding to ≈256,000 plates per meter) applying methylparaben utilizing an 80 mm × 0.2 mm i.d. monolithic capillary. The developed NVC/DVB monolithic supports showed high separation efficiency towards small molecules, which was exemplified applying reversed-phase (RP) separation of alkylbenzenes, beta-blockers, flavanoids, parabens, and phenones. The loading capacity was analyzed for isocratic separation of seven alkylbenzenes and was found to be up to 77 ng total mass of alkylbenzenes. Furthermore, a long-term stability test of 1,000 consecutive runs was performed and resulted in a maximum variance of 0.97, 0.85, and 0.16 % RSD for resolution, peak width at half height, and retention times, respectively. The material was proven to have a high permeability of 1.11E−14 m2, applying water as a mobile phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hjertén S, Liao J-L, Zhang R (1989) High-performance liquid chromatography on continuous polymer beds. J Chromatogr A 473:273–275

    Article  Google Scholar 

  2. Svec F, Frechet JMJ (1992) Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal Chem 64:820–822

    Article  CAS  Google Scholar 

  3. Svec F (2012) Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. J Chromatogr A 1228:250–262

    Article  CAS  Google Scholar 

  4. Liu K, Aggarwal P, Lawson JS, Tolley HD, Lee ML (2013) Organic monoliths for high-performance reversed-phase liquid chromatography. J Sep Sci 36(17):2767–2781

    Article  CAS  Google Scholar 

  5. Yu C, Xu M, Svec F, Fréchet JMJ (2002) Preparation of monolithic polymers with controlled porous properties for microfluidic chip applications using photoinitiated free-radical polymerization. Polym Sci Part A Polym Chem 40(6):755–769

    Article  CAS  Google Scholar 

  6. Sinner FM, Buchmeiser MR (2000) Ring-opening metathesis polymerization: access to a new class of functionalized, monolithic stationary phases for liquid chromatography. Angew Chem Int Ed 39:1433–1436

    Article  CAS  Google Scholar 

  7. Lämmerhofer M, Svec F, Fréchet JMJ, Lindner W (2000) Chiral monolithic columns for enantioselective capillary electrochromatography prepared by copolymerization of a monomer with quinidine functionality. 2. Effect of chromatographic conditions on the chiral separations. Anal Chem 72:4623–4628

    Article  Google Scholar 

  8. Tennikova TB, Bleha M, Švec F, Almazova TV, Belenkii BG (1991) High-performance membrane chromatography of proteins, a novel method of protein separation. J Chromatogr A 555:97–107

    Article  CAS  Google Scholar 

  9. Wang QC, Svec F, Frechet JMJ (1993) Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography. Anal Chem 65:2243–2248

    Article  CAS  Google Scholar 

  10. Wang QC, Švec F, Fréchet JMJ (1994) Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly (styrene-co-divinylbenzene). J Chromatogr A 669:230–235

    Article  CAS  Google Scholar 

  11. Meyers JJ, Liapis AI (1999) Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column. J Chromatogr A 852:3–23

    Article  CAS  Google Scholar 

  12. Gritti F, Piatkowski W, Guiochon G (2003) Study of the mass transfer kinetics in a monolithic column. J Chromatogr A 983:51–71

    Article  CAS  Google Scholar 

  13. Oberacher H, Premstaller A, Huber CG (2004) Characterization of some physical and chromatographic properties of monolithic poly(styrene–co-divinylbenzene) columns. J Chromatogr A 1030:201–208

    Article  CAS  Google Scholar 

  14. Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N (1996) Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal Chem 68:3498–3501

    Article  CAS  Google Scholar 

  15. Tanaka N, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Hosoya K, Ikegami T (2002) Monolithic silica columns for high-efficiency chromatographic separations. J Chromatogr A 965:35–49

    Article  CAS  Google Scholar 

  16. Leinweber FC, Lubda D, Cabrera K, Tallarek U (2002) Characterization of silica-based monoliths with bimodal pore size distribution. Anal Chem 74:2470–2477

    Article  CAS  Google Scholar 

  17. Oberacher H, Huber CG (2002) Capillary monoliths for the analysis of nucleic acids by high-performance liquid chromatography–electrospray ionization mass spectrometry. TrAC Trends Anal Chem 21:166–174

    Article  CAS  Google Scholar 

  18. Ivanov AR, Zang L, Karger BL (2003) Low-attomole electrospray ionization MS and MS/MS analysis of protein tryptic digests using 20-μm-i.d. Polystyrene–divinylbenzene monolithic capillary columns. Anal Chem 75:5306–5316

    Article  CAS  Google Scholar 

  19. Cabrera K, Lubda D, Eggenweiler HM, Minakuchi H, Nakanishi K (2000) A new monolithic-type HPLC column for fast separations. HRC J High Result Chromatogr 23:93–99

    Article  CAS  Google Scholar 

  20. Trojer L, Bisjak CP, Wieder W, Bonn GK (2009) High capacity organic monoliths for the simultaneous application to biopolymer chromatography and the separation of small molecules. J Chromatogr A 1216:6303–6309

    Article  CAS  Google Scholar 

  21. Greiderer A, Ligon SC, Huck CW, Bonn GK (2009) Monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for simultaneous separation of low- and high-molecular-weight compounds. J Sep Sci 32:2510–2520

    Article  CAS  Google Scholar 

  22. Greiderer A, Trojer L, Huck CW, Bonn GK (2009) Influence of the polymerisation time on the porous and chromatographic properties of monolithic poly(1,2-bis(p-vinylphenyl))ethane capillary columns. J Chromatogr A 1216:7747–7754

    Article  CAS  Google Scholar 

  23. Urban J, Svec F, Fréchet JMJ (2010) Hypercrosslinking: new approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. J Chromatogr A 1217:8212–8221

    Article  CAS  Google Scholar 

  24. Nischang I, Teasdale I, Brüggemann O (2010) Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography. J Chromatogr A 1217:7514–7522

    Article  CAS  Google Scholar 

  25. Mohr J, Swart R, Huber C (2011) Morphology and efficiency of poly(styrene-co-divinylbenzene)-based monolithic capillary columns for the separation of small and large molecules. Anal Bioanal Chem 400:2391–2402

    Article  CAS  Google Scholar 

  26. Kolarz BN, Wojaczyńska M, Pielichowski J (1991) Porous copolymers of N-vinylcarbazole and divinylbenzene. Angew Makromol Chem 192:27–34

    Article  CAS  Google Scholar 

  27. Hamid MA, Naheed R, Fuzail M, Rehman E (1999) The effect of different diluents on the formation of N-vinylcarbazole-divinylbenzene copolymer beads. Eur Polym J 35:1799–1811

    Article  CAS  Google Scholar 

  28. Gautam UG, Sawada T, Gautam MP, Takafuji M, Ihara H (2009) Poly(2-N-carbazolylethyl acrylate)-modified silica as a new polymeric stationary phase for reversed-phase high-performance liquid chromatography. J Chromatogr A 1216:7422–7426

    Article  CAS  Google Scholar 

  29. Mallik A, Shingo K, Gautam U, Sawada T, Takafuji M, Ihara H (2010) Complete chromatographic separation of steroids, including 17α and 17β-estradiols, using a carbazole-based polymeric organic phase in both reversed and normal-phase HPLC. Anal Bioanal Chem 397:623–629

    Article  CAS  Google Scholar 

  30. Koeck R, Bakry R, Tessadri R, Bonn GK (2013) Monolithic poly(N-vinylcarbazole-co-1,4-divinylbenzene) capillary columns for the separation of biomolecules. Analyst 138(17):5089–5098

    Article  CAS  Google Scholar 

  31. Danquah MK, Forde GM (2008) Preparation of macroporous methacrylate monolithic material with convective flow properties for bioseparation: investigating the kinetics of pore formation and hydrodynamic performance. Chem Eng J 140(1–3):593–599

    Article  CAS  Google Scholar 

  32. Lubbad SH, Buchmeiser MR (2009) Highly cross-linked polymeric capillary monoliths for the separation of low, medium, and high molecular weight analytes. J Sep Sci 32(15–16):2521–2529

    Article  CAS  Google Scholar 

  33. Nevejans F, Verzele M (1985) Swelling propensity (Sp factor) of semirigid chromatographic packing materials. J Chromatogr 350(1):145–150

    Article  CAS  Google Scholar 

  34. Engelhardt H, Arangio M, Lobert T (1997) A chromatographic test procedure for reversed-phase HPLC column evaluation. LC-GC 15(9):856–866

    CAS  Google Scholar 

  35. Siebert KJ (2006) Haze formation in beverages. LWT Food Sci Technol 39(9):987–994

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Genome Research in Austria (GEN-AU) (Federal Ministry for Education, Science and Culture, Vienna, Austria) and SFB021 for financial support of the presented work. The authors would like to thank Thomas Bielz (Institute of Physical Chemistry, University of Innsbruck) for his support in interpreting nitrogen sorption data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Bakry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 11.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koeck, R., Fischnaller, M., Bakry, R. et al. Preparation and evaluation of monolithic poly(N-vinylcarbazole-co-1,4-divinylbenzene) capillary columns for the separation of small molecules. Anal Bioanal Chem 406, 5897–5907 (2014). https://doi.org/10.1007/s00216-014-8007-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8007-1

Keywords

Navigation