Log in

A topological analysis of the bonding interaction within the tri-nuclear heterometallic cluster [Mo–Ru–Co(µ3–S)(CO)8(Cp)COOCH3], (Cp = η5-C5H4)

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The tri-nuclear heterometallic tetrahedral cluster [Mo–Ru–Co(µ3–S)(CO)8(Cp)COOCH3] (Cp = η5-C5H4) was studied employing quantum theory of atoms in molecules (QTAIM) to examine bonding interactions, including metal–metal (M–M), metal–sulfur (M–S), metal–carbonyl (M–CO), and metal–cyclopentadienyl (M–Cp) interactions. The electron density of bonding interactions within the cluster has its topological properties calculated based on this theory. Interestingly, the computed local topological characteristics for the Mo–Ru bond show notable distinctions in comparison to the parameters for interactions involving Mo–Co and Ru–Co, since for the latter, critical points and paths were not observed. The distribution of electron density was notably affected by the presence of bridging sulfide ligands in Mo…Co, Ru…Co interactions, much more than in the Mo–Ru bond. The characteristics of the latter bond exhibited attributes typical of interactions between open-shell metals. These features included slightly positive values for ρ(b) and ∇2ρ(b), along with small negative values of H(b)/ρ(b) approaching zero. Additionally, using the source function (SF) and electron localization function (ELF) methods, more focus has been given to the Mo–Ru bond. The core part, [Mo–Ru–Co(µ3–S)], was found to have a multicenter 4c–6e interaction. In this core, the three M–S bonds between the metal atoms and the sulfide ligand showed similar topological parameters that were typical of open-shell (covalent) interactions. Substantial π–back donation from CO to M was identified through the execution of δ(M…OCO) delocalization index calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Kameo H, Suzuki H (2008) Synthesis of trinuclear osmium polyhydrido clusters [{(C5Me5) Os}3 (μ-H)6]+ and {(C5Me5)Os}3 (μ-H)33-H)2 and comparison with the ruthenium analogues. Organometallics 27(16):4248–4253. https://doi.org/10.1021/om8003866

    Article  CAS  Google Scholar 

  2. Kameo H, Shima T, Nakajima Y, Suzuki H (2009) Synthesis of heterometallic trinuclear polyhydrido clusters containing ruthenium and osmium and their electronic and structural deviation from homometallic systems. Organometallics 28(8):2535–2545. https://doi.org/10.1021/om801222h

    Article  CAS  Google Scholar 

  3. Shima T, Sugimura Y, Suzuki H (2009) Heterometallic trinuclear polyhydrido complexes containing ruthenium and a group 9 metal, [Cp* 3Ru2M (μ3-H)(μ-H)3](M= Ir or Rh; Cp*= η5-C5Me5): Synthesis, structure, and site selectivity in reactions with phosphines. Organometallics 28(3):871–881. https://doi.org/10.1021/om8010432

    Article  CAS  Google Scholar 

  4. Suzuki H, Kakigano T, Tada KI, Igarashi M, Matsubara K, Inagaki A, Oshima M, Takao T (2005) Synthesis, structures, and reactions of coordinatively unsaturated trinuclear ruthenium polyhydrido complexes,[{Ru (C5Me5)}3 (μ-H)6](Y)(Y= BF4, CF3SO3, 1/2 (SO4), C6H5CO2, CH3CO2, B (C6H5)4, PF6) and [{Ru (C5Me5)}3 (μ-H)33-H)2]. Bull Chem Soc Jpn 78(1):67–87. https://doi.org/10.1246/bcsj.78.67

    Article  CAS  Google Scholar 

  5. Bader RF (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  6. Bianchi R, Gervasio G, Marabello D (2000) Experimental electron density analysis of Mn2 (CO)10: metal–metal and metal–ligand bond characterization. Inorg Chem 39(11):2360–2366. https://doi.org/10.1021/ic991316e

    Article  CAS  PubMed  Google Scholar 

  7. Bianchi R, Gervasio G, Marabello D (2001) Experimental electron density in the triclinic phase of Co2 (CO)6 (μ-CO)(μ-C4O2H2) at 120 K. Acta Crystallogr B 57(5):638–645. https://doi.org/10.1107/S0108768101009028

    Article  CAS  PubMed  Google Scholar 

  8. Macchi P, Proserpio DM, Sironi A (1998) Experimental electron density in a transition metal dimer: metal–metal and metal–ligand bonds. J Am Chem Soc 120(51):13429–13435. https://doi.org/10.1021/ja982903m

    Article  CAS  Google Scholar 

  9. Macchi P, Garlaschelli L, Martinengo S, Sironi A (1999) Charge density in transition metal clusters: supported vs unsupported Metal–metal interactions. J Am Chem Soc 121(44):10428–10429. https://doi.org/10.1021/ja9918977

    Article  CAS  Google Scholar 

  10. Farrugia LJ, Mallinson PR, Stewart B (2003) Experimental charge density in the transition metal complex Mn2 (CO)10: a comparative study. Acta Crystallogr B 59(2):234–247. https://doi.org/10.1107/S0108768103000892

    Article  CAS  PubMed  Google Scholar 

  11. Jansen G, Schubart M, Findeis B, Gade LH, Scowen IJ, McPartlin M (1998) Unsupported Ti–Co and Zr–Co bonds in heterobimetallic complexes: a theoretical description of metal–metal bond polarity. J Am Chem Soc 120(29):7239–7251. https://doi.org/10.1021/ja974160v

    Article  CAS  Google Scholar 

  12. Uhl W, Melle S, Frenking G, Hartmann M (2001) Reaction of Ni2Cp2(μ-CO)2 with the alkylgallium (I) and alkylindium (I) compounds E4[C(SiMe3)3]4 (E=Ga, In). insertion of E–R groups into the Ni–Ni bond versus replacement of CO by the isolobal E−R ligands. Inorg Chem 40(4):750–755. https://doi.org/10.1021/ic0005947

    Article  CAS  PubMed  Google Scholar 

  13. Zhao QY, Zhang WQ, Zhang YH, Hu B, Yin YQ, **a CG (2004) Synthesis of optically active tetrahedral clusters through ester exchange catalyzed by lipase. Organometallics 23(4):817–822. https://doi.org/10.1021/om034204a

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H (2009). Gaussian 09. In: Revision D. 01, Gaussian, Inc., Wallingford. http://www.gaussian.com

  15. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  16. Yang Y, Weaver MN, Merz KM Jr (2009) Assessment of the “6-31 + G** + LANL2DZ” mixed basis set coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. J Phys Chem A 113(36):9843–9851. https://doi.org/10.1021/jp807643p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  18. Biegler-König F, Schönbohm J (2002) Update of the AIM2000-program for atoms in molecules. J Comput Chem 23(15):1489–1494. https://doi.org/10.1002/jcc.10085

    Article  CAS  PubMed  Google Scholar 

  19. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  20. Huzinaga S, Klobukowski M (1993) Well-tempered Gaussian basis sets for the calculation of matrix Hartree—Fock wavefunctions. Chem Phys Lett 212(3–4):260–264. https://doi.org/10.1016/00092614(93)89323-A

    Article  CAS  Google Scholar 

  21. Grabowski SJ (2002) Properties of a ring critical pointas measures of intramolecular H-bond strength. Monatshefte für Chem Chem Mon 133:1373–1380. https://doi.org/10.1007/s00706-002-0498-3

    Article  CAS  Google Scholar 

  22. Rizhikov MR, Kozlova SG, Konchenko SN (2009) Electron structure of iron chalcogenide clusters Fe3Q from AIM and ELF data: effect of hydrogen atoms on interatomic interactions. J Phys Chem A 113(2):474–479. https://doi.org/10.1021/jp805941n

    Article  CAS  PubMed  Google Scholar 

  23. Macchi P, Sironi A (2003) Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities. Coord Chem Rev 238:383–412. https://doi.org/10.1016/S0010-8545(02)00252-7

    Article  CAS  Google Scholar 

  24. Esrafili MD, Rezaei S, Eftekhari E (2012) A theoretical investigation on geometry and electronic structure of small FemSn nanoclusters (1 ≤ m, n ≤ 4). Comput Theor Chem 1001:1–6. https://doi.org/10.1016/j.comptc.2012.09.034

    Article  CAS  Google Scholar 

  25. Bader RF (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102(37):7314–7323. https://doi.org/10.1021/jp981794v

    Article  CAS  Google Scholar 

  26. Hamza NA, Al-Ibadi MAM (2023) Theoretical study of Cr–Cr bonding in [Cp* 2Cr2 (CO) 2 (µ-PMe2) 2], [Cp*2Cr2 (CO)4 (µ-H)(µ-PMe2)], and [Cp*3Cr3 (CO)3 (μ-S)(μ-PMe2)] complexes by QTAIM theory. Transit Metal Chem. https://doi.org/10.1007/s11243-023-00559-2

    Article  Google Scholar 

  27. Stalke D (ed) (2012) Electron density and chemical bonding II: theoretical charge density studies (vol. 147). Springer

  28. Van der Maelen JF, García-Granda S, Cabeza JA (2011) Theoretical topological analysis of the electron density in a series of triosmium carbonyl clusters: [Os3 (CO)12], [Os3 (μ-H)2 (CO)10],[Os3 (μ-H)(μ-OH)(CO)10], and [Os3 (μ-H)(μ-Cl)(CO)10]. Comput Theor Chem 968(1–3):55–63. https://doi.org/10.1016/j.comptc.2011.05.003

    Article  CAS  Google Scholar 

  29. Van der Maelen JF, Cabeza JA (2016) A topological analysis of the bonding in [M2 (CO)10] and [M3 (μ-H)3 (CO)12] complexes (M=Mn, Tc, Re). Theor Chem Acc 135:1–11. https://doi.org/10.1007/s00214-016-1821-0

    Article  CAS  Google Scholar 

  30. Cabeza JA, Van der Maelen JF, Garcia-Granda S (2009) Topological analysis of the electron density in the N-heterocyclic carbene triruthenium cluster [Ru3 (μ-H)23-MeImCH)(CO)9](Me2Im = 1,3-dimethylimidazol-2-ylidene). Organometallics 28(13):3666–3672. https://doi.org/10.1021/om9000617

    Article  CAS  Google Scholar 

  31. Gatti C, Lasi D (2007) Source function description of metal–metal bonding in d-block organometallic compounds. Faraday Discuss 135:55–78. https://doi.org/10.1039/B605404H

    Article  CAS  PubMed  Google Scholar 

  32. Gervasio G, Marabello D, Bianchi R, Forni A (2010) Detection of weak intramolecular interactions in Ru3 (CO)12 by topological analysis of charge density distributions. J Phys Chem A 114(34):9368–9373. https://doi.org/10.1021/jp105130z

    Article  CAS  PubMed  Google Scholar 

  33. Niskanen M, Hirva P, Haukka M (2009) Computational DFT study of ruthenium tetracarbonyl polymer. J Chem Theory Comput 5(4):1084–1090. https://doi.org/10.1021/ct800407h

    Article  CAS  PubMed  Google Scholar 

  34. Overgaard J, Clausen HF, Platts JA, Iversen BB (2008) Experimental and theoretical charge density study of chemical bonding in a Co dimer complex. J Am Chem Soc 130(12):3834–3843. https://doi.org/10.1021/ja076152c

    Article  CAS  PubMed  Google Scholar 

  35. Macchi P, Garlaschelli L, Sironi A (2002) Electron density of semi-bridging carbonyls. Metamorphosis of CO ligands observed via experimental and theoretical investigations on [FeCo (CO)8]. J Am Chem Soc 124(47):14173–14184. https://doi.org/10.1021/ja026186e

    Article  CAS  PubMed  Google Scholar 

  36. Van der Maelen JF, Gutiérrez-Puebla E, Monge Á, García-Granda S, Resa I, Carmona E, Fernández-Díaz MT, McIntyre GJ, Pattison P, Weber HP (2007) Experimental and theoretical characterization of the Zn—Zn bond in [Zn25-C5Me5)2]. Acta Crystallogr B 63(6):862–868. https://doi.org/10.1107/S0108768107045880

    Article  CAS  PubMed  Google Scholar 

  37. Hamza NA, Al-Ibadi MAM (2023) QTAIM view of Fe… Fe binding within triiron clusters [(μ3-S) Fe3 (CO)93-CO)]. Theor Chem Acc 142(11):120. https://doi.org/10.1007/s00214-023-03065-x

    Article  CAS  Google Scholar 

  38. Feliz M, Llusar R, Andrés J, Berski S, Silvi B (2002) Topological analysis of the bonds in incomplete cuboidal [Mo3S4] clusters. New J Chem 26(7):844–850. https://doi.org/10.1039/B202907C

    Article  CAS  Google Scholar 

  39. Low AA, Hall MB (1993) Nature of metal-metal interactions in systems with bridging ligands. 2. Electronic and molecular structure of the cyclopentadienylnitrosylcobalt dimer and related molecules. Inorg Chem 32(18):3880–3889. https://doi.org/10.1021/ic00070a019

    Article  CAS  Google Scholar 

  40. Farrugia LJ, Evans C, Senn HM, Hanninen MM, Sillanpaa R (2012) QTAIM view of metal–metal bonding in di-and trinuclear disulfido carbonyl clusters. Organometallics 31(7):2559–2570. https://doi.org/10.1021/om2011744

    Article  CAS  Google Scholar 

  41. Stash AI, Tanaka K, Shiozawa K, Makino H, Tsirelson VG (2005) Atomic interactions in ethylenebis (1-indenyl) zirconium dichloride as derived by experimental electron density analysis. Acta Crystallogr B 61(4):418–428. https://doi.org/10.1107/S0108768105014114

    Article  CAS  PubMed  Google Scholar 

  42. May A, Ouddai N (2012) Topological analysis of the bonding in [Ru54-C2) L(CO)13] and [Ru44-C2) L(CO)10] complexes (L=(μ-SMe)(μ-PPh2)2). J Struct Chem 53(2):220–227. https://doi.org/10.1134/S0022476612020035

    Article  CAS  Google Scholar 

  43. Arcisauskaite V, Spivak M, McGrady JE (2015) Structure and bonding in trimetallic arrays containing a Cr–Cr quadruple bond: a challenge to density functional theory. Inorg Chim Acta 424:293–299. https://doi.org/10.1016/j.ica.2014.08.061

    Article  CAS  Google Scholar 

  44. **e ZZ, Fang WH (2005) A combined DFT and CCSD (T) study on electronic structures and stability of the M25-CpX)2 (M=Zn and Cd, CpX=C5Me5 and C5H5) complexes. Chem Phys Lett 404(1–3):212–216. https://doi.org/10.1016/j.cplett.2005.01.086

    Article  CAS  Google Scholar 

  45. Cortés-Guzmán F, Bader RF (2005) Complementarity of QTAIM and MO theory in the study of bonding in donor–acceptor complexes. Coord Chem Rev 249(5–6):633–662. https://doi.org/10.1016/j.ccr.2004.08.022

    Article  CAS  Google Scholar 

  46. Bytheway I, Gillespie RJ, Tang TH, Bader RF (1995) Core distortions and geometries of the difluorides and dihydrides of Ca, Sr, and Ba. Inorg Chem 34(9):2407–2414. https://doi.org/10.1021/ic00113a023

    Article  CAS  Google Scholar 

  47. Matta CF, Boyd RJ (2007) An introduction to the quantum theory of atoms in molecules. Quantum Theory Atoms Mol Solid State DNA Drug Des. https://doi.org/10.1002/9783527610709

    Article  Google Scholar 

  48. Poater J, Fradera X, Duran M, Solà M (2003) The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. Chem A Eur J 9(2):400–406. https://doi.org/10.1002/chem.200390041

    Article  CAS  Google Scholar 

  49. Bader RFW, Anderson SG, Duke AJ (1979) Quantum topology of molecular charge distributions. J Am Chem Soc 101(6):1389–1395. https://doi.org/10.1021/ja00500a006

    Article  CAS  Google Scholar 

  50. Cremer D, Kraka E (1984) Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl 23(8):627–628. https://doi.org/10.1002/anie.198406271

    Article  Google Scholar 

  51. Bianchi R, Gervasio G, Marabello D (2001) An experimental evidence of a metal–metal bond in μ-carbonylhexacarbonyl [μ-(5-oxofuran-2 (5H)-ylidene-κC, κC)]-dicobalt (Co–Co)[Co2 (CO)6 (μ-CO)(μ-C4O2H2)]. Helv Chim Acta 84(3):722–734. https://doi.org/10.1002/1522-2675(20010321)84:3%3c722::AID-HLCA722%3e3.0.CO;2-0

    Article  CAS  Google Scholar 

  52. Frenking G, Shaik S (eds) (2014) The chemical bond: fundamental aspects of chemical bonding (Vol. 1). Wiley

  53. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92(9):5397–5403. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

Download references

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Contributions

MAMAI designed the research project, supervised the work, and revised and edited the manuscript and AARAK carried out the calculations and wrote the first draft of the manuscript. All authors contributed to data interpretation and discussion of the results.

Corresponding authors

Correspondence to Ali Abdulhasan Rasool Al-Karaawi or Muhsen Abood Muhsen Al-Ibadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2162 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Karaawi, A.A.R., Al-Ibadi, M.A.M. A topological analysis of the bonding interaction within the tri-nuclear heterometallic cluster [Mo–Ru–Co(µ3–S)(CO)8(Cp)COOCH3], (Cp = η5-C5H4). Theor Chem Acc 143, 25 (2024). https://doi.org/10.1007/s00214-024-03097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-024-03097-x

Keywords

Navigation