Log in

Theoretical elucidation of the metabolic mechanisms of phenothiazine neuroleptic chlorpromazine catalyzed by cytochrome P450 isoenzyme 1A2

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Chlorpromazine, belonging to the first-generation antipsychotics, is known to cause some side effects, such as hepatotoxicity and agranulocytosis. The metabolic mechanisms of chlorpromazine remain elusive up to now, but are thought to result in the formation of some reactive metabolites having side effects on the parent drug. The goal of this work was to explore the metabolic mechanisms of chlorpromazine catalyzed by cytochrome P450 isoenzyme 1A2, a highly important activating enzyme of cytochrome P450 family, using DFT calculation. Three types of metabolic mechanisms were characterized, including S-oxidation, aromatic hydroxylation and N-dealkylation. The calculated results demonstrate that N 14-demethylation is the most thermodynamically and kinetically favorable metabolic pathway of chlorpromazine, followed by S5-oxidation. Then, mono-N-desmethylchlorpromazine is the most feasible chlorpromazine metabolite, which can occur further demethylation to form di-N-desmethylchlorpromazine. Besides, chlorpromazine 5-sulfoxide and 7-hydroxychlorpromazine are both the possible metabolites of chlorpromazine. Interestingly, N-methyl hydroxylation, the rate-limiting step of N-demethylation, proceeds predominantly via a single-electron-transfer mechanism. All the proton transfer processes involved in the aromatic hydroxylation and N-dealkylation prefer to occurrence in a water-assisted enzymatic process. Each metabolic pathway proceeds in the spin-selective manner via the low-spin state of Cpd I. Our results are in good accordance with the experimental observations, which can provide some essential implications for the metabolic mechanisms of chlorpromazine-like drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu X, De Haan S (2009) Cochrane Database Syst Rev 2:CD007778

    Google Scholar 

  2. Anthérieu S, Bachour-El Azzi P, Dumont J, Abdel-Razzak Z, Guguen-Guillouzo C, Fromenty B, Robin MA, Guillouzo A (2013) Hepatology 57:1518–1529

    Article  Google Scholar 

  3. Tohen M, Vieta E (2009) Bipolar Disord 2:45–54

    Article  Google Scholar 

  4. Morak-Młodawska B, Jeleń M (2007) Pol Merkur Lek 23:459–461

    Google Scholar 

  5. Shin SY, Kim CG, Kim SH, Kim YS, Lim Y, Lee YH (2010) Exp Mol Med 42:395–405

    Article  CAS  Google Scholar 

  6. Liperoti R, Pedone C, Corsonello A (2008) Curr Neuropharmacol 6:117–124

    Article  CAS  Google Scholar 

  7. Drucker AM, Rosen CF (2011) Drug Saf 34:821–837

    Article  CAS  Google Scholar 

  8. Lasic D, Cvitanovic MZ, Uglešic B, Višic V, Hlevnjak I (2011) Psychiatr Danub 23:194–197

    Google Scholar 

  9. Shahzad S, Suleman MI, Shahab H, Mazour I, Kaur A, Rudzinskiy P, Lippmann S (2002) Psychosomatics 43:354–359

    Article  CAS  Google Scholar 

  10. Subashini K, Rao VA (2004) Indian J Pharmacol 36:323–324

    Google Scholar 

  11. Toler SM (2004) Exp Biol Med (Maywood) 229:607–615

    CAS  Google Scholar 

  12. Wójcikowski J, Boksa J, Daniel WA (2010) Biochem Pharmacol 80:1252–1259

    Article  Google Scholar 

  13. Daniel W (1995) Pol J Pharmacol 47:367–379

    CAS  Google Scholar 

  14. Chetty M, Pillay VL, Moodley SV, Miller R (1996) Eur Neuropsychopharmacol 2:85–91

    Article  Google Scholar 

  15. Chetty M, Gouws E, Miller R, Moodley SV (1999) Eur Neuropsychopharmacol 9(1–2):77–82

    Article  CAS  Google Scholar 

  16. Abernathy CO, Lukacs L, Zimmerman HJ (1977) Proc Soc Exp Biol Med 155:474–478

    Article  CAS  Google Scholar 

  17. Tavoloni N, Boyer JL (1980) J Pharmacol Exp Ther 214:269–274

    CAS  Google Scholar 

  18. Wójcikowski J, Pichard-Garcia L, Maurel P, Daniel WA (2003) Br J Pharmacol 138:1465–1474

    Article  Google Scholar 

  19. Wójcikowski J, Pichard-Garcia L, Maurel P, Daniel WA (2004) Eur Neuropsychopharmacol 14:199–208

    Article  Google Scholar 

  20. Wójcikowski J, Maurel P, Daniel WA (2006) Drug Metab Dispos 34:471–476

    Google Scholar 

  21. Chetty M, Miller R, Moodley SV (1994) Eur J Clin Pharmacol 46:523–526

    Article  CAS  Google Scholar 

  22. Kot M, Daniel WA (2008) Biochem Pharmacol 76:543–551

    Article  CAS  Google Scholar 

  23. Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM (2014) Chem Rev 114:3601–3658

    Article  CAS  Google Scholar 

  24. Schrǒder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  Google Scholar 

  25. Baciocchi EBM, Gerini MF, Lanzalunga O (2005) J Org Chem 70:5144

    Article  CAS  Google Scholar 

  26. Guengerich FP, Yun CH, Macdonald TL (1996) J Biol Chem 271:27321–27329

    Article  CAS  Google Scholar 

  27. Jurva U, Bissel P, Isin EM, Igarashi K, Kuttab S, Castagnoli N (2005) J Am Chem Soc 127:12368–12377

    Article  CAS  Google Scholar 

  28. Li CS, Wu W, Kumar D, Shaik S (2006) J Am Chem Soc 128:394–395

    Article  CAS  Google Scholar 

  29. Chen H, de Groot MJ, Vermeulen NPE, Hanzlik RP (1997) J Org Chem 62:8227–8230

    Article  CAS  Google Scholar 

  30. Chen ZQ, Kang Y, Zhang CH, Tao J, Xue Y (2015) Theor Chem Acc 134:110

    Article  Google Scholar 

  31. Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) Chem Rev 110:949–1017

    Article  CAS  Google Scholar 

  32. Sansen S, Yano JK, Reynald RL, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2007) J Biol Chem 282:14348–14355

    Article  CAS  Google Scholar 

  33. Tao J, Kang Y, Xue ZY, Wang YT, Zhang Y, Chen Q, Chen ZQ, Xue Y (2015) J Mol Graph Model 61:123–132

    Article  CAS  Google Scholar 

  34. Kwiecien RA, Molinié R, Paneth P, Silvestre V, Lebreton J, Robins RJ (2011) Arch Biochem Biophys 510:35–41

    Article  CAS  Google Scholar 

  35. Li DM, Wang Y, Yang CL, Han KL (2009) Dalton Trans 14:291–297

    Article  Google Scholar 

  36. Schyman PUD, Wang Y, Shaik S (2010) J Phys Chem B 114:7078–7089

    Article  CAS  Google Scholar 

  37. Kang Y, Tao J, Xue ZY, Zhang Y, Chen ZQ, Xue Y (2016) Tetrahedron 72:2858–2867

    Article  CAS  Google Scholar 

  38. Zhang Q, Bell R, Truong TN (1995) J Phys Chem 99:592–599

    Article  CAS  Google Scholar 

  39. Reed AE, Schleyer PR (1990) J Am Chem Soc 112:1434–1445

    Article  CAS  Google Scholar 

  40. Mennucci B (2012) WIREs Comput Mol Sci 2:386–404

    Article  CAS  Google Scholar 

  41. Schutz CN, Warshel A (2001) Proteins 44:400–417

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09 revision D01. Gaussian Inc, Wallingford

    Google Scholar 

  43. Bach RD, Dmitrenko O (2003) J Phys Chem B 107:12851–12861

    Article  CAS  Google Scholar 

  44. Wang Y, Kumar D, Yang CL, Han KL, Shaik S (2007) J Phys Chem B 111:7700–7710

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (Grant No. 21203153), Science and Technology Department of Sichuan Province (Grant No. 2011JY0136) and Department of Education of Sichuan Province (Grant No. 12ZA174) and China West Normal University (Grant No. 11B002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeqin Chen.

Additional information

Zhiyu Xue and Yan Zhang authors have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Z., Zhang, Y., Tao, J. et al. Theoretical elucidation of the metabolic mechanisms of phenothiazine neuroleptic chlorpromazine catalyzed by cytochrome P450 isoenzyme 1A2. Theor Chem Acc 135, 218 (2016). https://doi.org/10.1007/s00214-016-1943-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1943-4

Keywords

Navigation