Log in

Electric properties of the low-lying excited states of benzonitrile: geometry relaxation and solvent effects

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Accurate calculations of the dipole moment and the polarizability for the ground and two lowest singlet and triplet excited states of benzonitrile (BN) have been performed by a variety of wave function and density functional theory (DFT) methods. Changes in molecular properties upon the electron excitation strongly depend on the character of an excited state. The vertical dipole moment change and the excess polarizability for the 11B state are smaller than those for the 21A state. In order to estimate adiabatic excited-state properties, corresponding relaxed geometries have been obtained using the PBE0 functional with the aug-cc-pVTZ basis set. The excited-state property values obtained with the long-range exchange corrected DFT methods are in general closer to the coupled cluster (CC) results, although the hybrid DFTs also provide reasonable predictions. Our CCSD adiabatic excess dipole moment value for the 11B state equal to 0.11 D is in excellent agreement with the experimental value. The 21A state appears to be more sensitive to selected method due to an important role of double-excitation effects. Solvent effects on dipole moment and polarizability of BN molecule in its ground and excited states were evaluated using both LR and cLR methods combined with the (TD-)CAMB3LYP/POL approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York

    Google Scholar 

  2. Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195–242

    Article  CAS  Google Scholar 

  3. She CX, Easwaramoorthi S, Kim P, Hiroto S, Hisaki I, Shinokubo H, Osuka A, Kim D, Hupp JT (2010) J Phys Chem A 114:3384–3390

    Article  CAS  Google Scholar 

  4. Urban M, Sadlej AJ (1990) Theor Chim Acta 78:189–201

    Article  CAS  Google Scholar 

  5. Klein S, Kochanski E, Strich A, Sadlej AJ (1996) Theor Chim Acta 94:75–91

    CAS  Google Scholar 

  6. Palenikova J, Kraus M, Neogrady P, Kello V, Urban M (2008) Mol Phys 106:2333–2344

    Article  CAS  Google Scholar 

  7. Pasteka LF, Melichercik M, Neogrady P, Urban M (2012) Mol Phys 110:2219–2237

    Article  CAS  Google Scholar 

  8. Bublitz GU, Boxer SG (1997) Annu Rev Phys Chem 48:213–242

    Article  CAS  Google Scholar 

  9. Boxer SG (2009) J Phys Chem B 113:2972–2983

    Article  CAS  Google Scholar 

  10. Premvardhan LL, Peteanu LA (2002) J Photochem Photobiol A 154:69–79

    Article  CAS  Google Scholar 

  11. Casida ME, Huix-Rotllant M (2012) Annu Rev Phys Chem 63:287–323

    Article  CAS  Google Scholar 

  12. Pluta T, Kolaski M, Medveď M, Budzak S (2012) Chem Phys Lett 546:24–29

    Article  CAS  Google Scholar 

  13. Grozema FC, Telesca R, Jonkman HT, Siebbeles LDA, Snijders JG (2001) J Chem Phys 115:10014–10021

    Article  CAS  Google Scholar 

  14. Grozema FC, Telesca R, Snijders JG, Siebbeles LDA (2003) J Chem Phys 118:9441–9446

    Article  CAS  Google Scholar 

  15. Borst DR, Korter TM, Pratt DW (2001) Chem Phys Lett 350:485–490

    Article  CAS  Google Scholar 

  16. Kawski A, Kuklinski B, Bojarski P (2006) Chem Phys Lett 419:309–312

    Article  CAS  Google Scholar 

  17. Demeter A, Zachariasse KA (2008) J Phys Chem A 112:1359–1362

    Article  CAS  Google Scholar 

  18. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  19. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  20. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  21. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem-Us 98:11623–11627

    Article  CAS  Google Scholar 

  22. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  23. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  24. Chai JD, Head-Gordon M (2008) J Chem Phys 128:084106

    Article  Google Scholar 

  25. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425–8433

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  27. Roos BO (2007) The complete active space self-consistent field method and its applications in electronic structure calculations. Adv Chem Phys. doi:10.1002/9780470142943

    Google Scholar 

  28. Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483–5488

    Article  CAS  Google Scholar 

  29. Andersson K, Malmqvist PÅ, Roos BO (1992) J Chem Phys 96:1218–1226

    Article  CAS  Google Scholar 

  30. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  31. Guido CA, Jacquemin D, Adamo C, Mennucci B (2010) J Phys Chem A 114:13402–13410

    Article  CAS  Google Scholar 

  32. Sadlej AJ (1988) Collect Czechoslov Chem Commun 53:1995–2016

    Article  CAS  Google Scholar 

  33. Benkova Z, Cernusak I, Zahradnik P (2006) Mol Phys 104:2011–2026

    Article  CAS  Google Scholar 

  34. Jacquemin D, Wathelet V, Perpete EA, Adamo C (2009) J Chem Theory Comput 5:2420–2435

    Article  CAS  Google Scholar 

  35. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544

    Article  CAS  Google Scholar 

  36. Silva MR, Schreiber M, Sauer SPA, Thiel W (2008) J Chem Phys 129:104103

    Article  Google Scholar 

  37. Jacquemin D, Perpete EA, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar DG (2010) J Chem Theory Comput 6:2071–2085

    Article  CAS  Google Scholar 

  38. Christiansen O, Halkier A, Koch H, Jorgensen P, Helgaker T (1998) J Chem Phys 108:2801–2816

    Article  Google Scholar 

  39. Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Ekstrom U, Enevoldsen T, Eriksen JJ, Ettenhuber P, Fernandez B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Hattig C, Heiberg H, Helgaker T, Hennum AC, Hettema H, Hjertenaes E, Host S, Hoyvik IM, Iozzi MF, Jansik B, Jensen HJA, Jonsson D, Jorgensen P, Kauczor J, Kirpekar S, Kjrgaard T, Klopper W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnaes OB, Melo JI, Mikkelsen KV, Myhre RH, Neiss C, Nielsen CB, Norman P, Olsen J, Olsen JMH, Osted A, Packer MJ, Pawlowski F, Pedersen TB, Provasi PF, Reine S, Rinkevicius Z, Ruden TA, Ruud K, Rybkin VV, Salek P, Samson CCM, de Meras AS, Saue T, Sauer SPA, Schimmelpfennig B, Sneskov K, Steindal AH, Sylvester-Hvid KO, Taylor PR, Teale AM, Tellgren EI, Tew DP, Thorvaldsen AJ, Thogersen L, Vahtras O, Watson MA, Wilson DJD, Ziolkowski M, Agren H (2014) Wires Comput Mol Sci 4:269–284

    Article  CAS  Google Scholar 

  40. Christiansen O, Koch H, Jorgensen P (1995) Chem Phys Lett 243:409–418

    Article  CAS  Google Scholar 

  41. Zilberg S, Haas Y (2002) J Phys Chem A 106:1–11

    Article  CAS  Google Scholar 

  42. Sobolewski AL, Domcke W (1996) Chem Phys Lett 250:428–436

    Article  CAS  Google Scholar 

  43. Rutishauser H (1963) Matematik 5:48–54

    Article  Google Scholar 

  44. Medved M, Stachova M, Jacquemin D, Andre JM, Perpete EA (2007) J Mol Struct Theochem 847:39–46

    Article  CAS  Google Scholar 

  45. Amovilli C, Barone V, Cammi R, Cances E, Cossi M, Mennucci B, Pomelli CS, Tomasi J (1999) Adv Quantum Chem 32:227–261

    Google Scholar 

  46. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  47. Cammi R, Mennucci B, Tomasi J (2000) J Phys Chem A 104:4690–4698

    Article  CAS  Google Scholar 

  48. Illien B, Evain K, Le Guennec M (2003) J Mol Struct Theochem 630:1–9

    Article  CAS  Google Scholar 

  49. Benassi E, Egidi F, Barone V (2015) J Phys Chem B 119:3155–3173

    Article  CAS  Google Scholar 

  50. Sylvester-Hvid KO, Mikkelsen KV, Norman P, Jonsson D, Ågren H (2004) J Phys Chem A 108:8961–8965

    Article  CAS  Google Scholar 

  51. Cammi R, Mennucci B (1999) J Chem Phys 110:9877–9886

    Article  CAS  Google Scholar 

  52. Cossi M, Barone V (2001) J Chem Phys 115:4708–4717

    Article  CAS  Google Scholar 

  53. Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G (2006) J Chem Phys 124:124520

    Article  Google Scholar 

  54. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  55. Gordon MS, Schmidt MW (2005) Chapter 41: advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry. Elsevier, Amsterdam, pp 1167–1189. doi:10.1016/B978-044451719-7/50084-6

    Chapter  Google Scholar 

  56. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 A.1. Gaussian, Inc., Wallingford, CT

  57. Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist PÅ, Neogrády P, Pedersen TB, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224–247

    Article  CAS  Google Scholar 

  58. Lide DR (1954) J Chem Phys 22:1577–1578

    Article  CAS  Google Scholar 

  59. Wohlfart K, Schnell M, Grabow JU, Kupper J (2008) J Mol Spectrosc 247:119–121

    Article  CAS  Google Scholar 

  60. Lide DR (ed) (1993) Handbook of chemistry and physics, 73rd edn. CRC Press, Boca Raton

  61. Le Fevre CG, Le Fevre RJW (1954) J Chem Soc 1954:1577–1588

    Article  Google Scholar 

  62. Le Fevre RJW, Orr BJ, Ritchie GLD (1965) J Chem Soc 1965:2499–2505

    Article  Google Scholar 

  63. Alvarado YJ, Labarca PH, Cubillan N, Osorio E, Karam A (2003) Z Naturforsch A 58:68–74

    Article  CAS  Google Scholar 

  64. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem Phys 128:044118

    Article  Google Scholar 

  65. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  66. Borst DR, Pratt DW, Schaeffer M (2007) Phys Chem Chem Phys 9:4563–4571

    Article  CAS  Google Scholar 

  67. Winter NOC, Graf NK, Leutwyler S, Hattig C (2013) Phys Chem Chem Phys 15:6623–6630

    Article  CAS  Google Scholar 

  68. Huang KT, Lombardi JR (1971) J Chem Phys 55:4072–4076

    Article  CAS  Google Scholar 

  69. Muirhead AR, Hartford A, Huang KT, Lombardi JR (1972) J Chem Phys 56:4385–4393

    Article  CAS  Google Scholar 

  70. Alvarado YJ, Cubillan N, Labarca PH, Karam A, Arrieta F, Castellano O, Soscún H (2002) J Phys Org Chem 15:154–164

    Article  CAS  Google Scholar 

  71. Alvarado YJ, Soscún H, Velazco W, Labarca PH, Cubillan N, Hernández J (2002) J Phys Org Chem 15:835–843

    Article  CAS  Google Scholar 

  72. Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ (2002) J Phys Chem A 106:6102–6113

    Article  CAS  Google Scholar 

  73. Chibani S, Budzak S, Medved M, Mennucci B, Jacquemin D (2014) Phys Chem Chem Phys 16:26024–26029

    Article  CAS  Google Scholar 

  74. Chibani S, Laurent AD, Blondel A, Mennucci B, Jacquemin D (2014) J Chem Theory Comput 10:1848–1851

    Article  CAS  Google Scholar 

  75. Jacquemin D, Chibani S, Le Guennic B, Mennucci B (2014) J Phys Chem A 118:5343–5348

    Article  CAS  Google Scholar 

  76. Improta R, Barone V (2009) J Mol Struct Theochem 914:87–93

    Article  CAS  Google Scholar 

  77. Budzak S, Medveď M, Mennucci B, Jacquemin D (2014) J Phys Chem A 118:5652–5656

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the project “Mobilities - enhancing research, science and education at the Matej Bel University,” ITMS code: 26110230082, under the Operational Program Education financed by the European Social Fund. Part of the computations was performed in the HPC Centers of the Matej Bel University in Banská Bystrica and the Slovak Academy of Sciences in Žilina using the HPC infrastructure acquired in project ITMS 26230120002 and 26210120002 (Slovak infrastructure for high-performance computing) supported by the Research & Development Operational Programme funded by the ERDF. T.P. acknowledges the computational grants from the Supercomputer and Networking Center ACK CYFRONET AGH in Krakow, Poland (MNiSW/Zeus_lokalnie/UŚląski/011/2014), and from the Wroclaw Centre for Networking and Supercomputing, in Wrocław, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Medveď.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medveď, M., Budzák, Š. & Pluta, T. Electric properties of the low-lying excited states of benzonitrile: geometry relaxation and solvent effects. Theor Chem Acc 134, 78 (2015). https://doi.org/10.1007/s00214-015-1678-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1678-7

Keywords

Navigation