Log in

Organic sensitizers with modified di(thiophen-2-yl)phenylamine donor units for dye-sensitized solar cells: a computational study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A new series of organic donor–π–acceptor (D–π–A) dyes namely B16 with modification of donor groups by introducing thiophene (as D) and fluorene-connected carbazole on top of thiophene (as 2D–D) in phenylamine moieties, and with elongation of π-spacer unit of thiophene (1–3 units) in the π-spacer, were molecularly designed by using density functional theory (DFT) and time-dependent DFT. The nature of intramolecular charge transfer of all dyes was elucidated by means of frontier molecular orbital analysis, electronic structures, and absorption spectra to provide their potential use for dye-sensitized solar cells (DSSCs). The structural results show that the 2D–D–π–A dyes have a nonplanar structure on the D–D moiety that may suppress the aggregation of dye and yet maintain the conjugation in the whole D–π–A moiety. The systematically elongating π-spacer of B46 dyes with increasing number of thiophene group and the introducing 2D into D–π–A dyes give the redshift on absorption peak and broaden the absorption range, which are in excellent agreement with available experiment. Thus, this redshift improves their overall light-harvesting efficiency (LHE) better than the B13 dyes. Among the six dyes, B6 would have the best performance because it has the highest predicted LHE at the maximum absorption wavelength (λ max) and the suitable driving force ΔG inject of the electron injection from the excited state of dyes to the conduction band of TiO2. The prototype of DSSCs performance of selected dyes was further simulated using the chemisorption of dyes onto the (TiO2)38 cluster to reveal the nature of the electron injection mechanism. This current work is expected to assist in the molecular design of new metal-free organic dyes for use in DSSCs yielding highly efficient performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

    Article  CAS  Google Scholar 

  3. Kim B-G, Chung K, Kim J (2013) Molecular design principle of all-organic dyes for dye-sensitized solar cells. Chem Eur J 19(17):5220–5230

    Article  CAS  Google Scholar 

  4. Kloo L (2013) On the early development of organic dyes for dye-sensitized solar cells. Chem Commun 49:6580–6583

    Article  CAS  Google Scholar 

  5. Liang M, Chen J (2013) Arylamine organic dyes for dye-sensitized solar cells. Chem Soc Rev 42:3453–3488

    Article  CAS  Google Scholar 

  6. Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Edit 48(14):2474–2499

    Article  CAS  Google Scholar 

  7. Ning Z, Fub Y, Tian H (2010) Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy Environ Sci 3:1170–1181

    Article  CAS  Google Scholar 

  8. Chung I, Lee B, He J, Chang RPH, Kanatzidis MG (2012) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485:486–489

    Article  CAS  Google Scholar 

  9. Ooyama Y, Harima Y (2009) Molecular designs and syntheses of organic dyes for dye-sensitized solar cells. Eur J Org Chem 18:2903–2934

    Article  Google Scholar 

  10. Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P (2010) Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem Mater 22(5):1915–1925

    Article  CAS  Google Scholar 

  11. Yanagida S, Yu Y, Manseki K (2009) Iodine/iodide-free dye-sensitized solar cells. Acc Chem Res 42(11):1827–1838

    Article  CAS  Google Scholar 

  12. Daeneke T, Kwon T-H, Holmes AB, Duffy NW, Bach U, Spiccia L (2011) High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nat Chem 3:211–215

    CAS  Google Scholar 

  13. Hu K, Robson KCD, Johansson PG, Berlinguette CP, Meyer GJ (2012) Intramolecular hole transfer at sensitized TiO2 interfaces. J Am Chem Soc 134(20):8352–8355

    Article  CAS  Google Scholar 

  14. Robson KCD, Hu K, Meyer GJ, Berlinguette CP (2013) Atomic level resolution of dye regeneration in the dye-sensitized solar cell. J Am Chem Soc 135(5):1961–1971

    Article  CAS  Google Scholar 

  15. Yakhanthip T, Jungsuttiwong S, Namuangruk S, Kungwan N, Promarak V, Sudyoadsuk T, Kochpradist P (2011) Theoretical investigation of novel carbazole-fluorene based D-π-A conjugated organic dyes as dye-sensitizer in dye-sensitized solar cells (DSCs). J Comput Chem 32(8):1568–1576

    Article  CAS  Google Scholar 

  16. Jungsuttiwong S, Yakhanthip T, Surakhot Y, Khunchalee J, Sudyoadsuk T, Promarak V, Kungwan N, Namuangruk S (2012) The effect of conjugated spacer on novel carbazole derivatives for dye-sensitized solar cells: density functional theory/time-dependent density functional theory study. J Comput Chem 33(17):1517–1523

    Article  CAS  Google Scholar 

  17. Sudyoadsuk T, Khunchaleeb J, Pansayb S, Tongkaseeb P, Moradab S, Kaewinb T, Jungsuttiwongb S, Promaraka V (2013) An organic dye using N-dodecyl-3-(3,6-di-tert-butylcarbazol-N-yl)carbazol-6-yl as a donor moiety for efficient dye-sensitized solar cells. Tetrahedron Lett 54(36):4903–4907

    Article  CAS  Google Scholar 

  18. Tian H, Yang X, Cong J, Chen R, Liu J, Hao Y, Hagfeldt A, Sun L (2009) Tuning of phenoxazine chromophores for efficient organic dye-sensitized solar cells. Chem Commun 41:6288–6290

    Article  Google Scholar 

  19. Koumura N, Wang Z-S, Mori S, Miyashita M, Suzuki E, Hara K (2006) Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J Am Chem Soc 128(44):14256–14257

    Article  CAS  Google Scholar 

  20. Zhang X-H, Cui Y, Katoh R, Koumura N, Hara K (2010) Organic dyes containing thieno[3,2-b]indole donor for efficient dye-sensitized solar cells. J Phys Chem C 114(42):18283–18290

    Article  CAS  Google Scholar 

  21. Namuangruk S, Fukuda R, Ehara M, Meeprasert J, Khanasa T, Morada S, Kaewin T, Jungsuttiwong S, Sudyoadsuk T, Promarak V (2012) D–D − π–A-type organic dyes for dye-sensitized solar cells with a potential for direct electron injection and a high extinction coefficient: synthesis, characterization, and theoretical investigation. J Phys Chem C 116(49):25653–25663

    Article  CAS  Google Scholar 

  22. Khanasa T, Jantasing N, Morada S, Leesakul N, Tarsang R, Namuangruk S, Kaewin T, Jungsuttiwong S, Sudyoadsuk T, Promarak V (2013) Synthesis and characterization of 2D–D–π–A-type organic dyes bearing bis(3,6-di-tert-butylcarbazol-9-ylphenyl)aniline as donor moiety for dye-sensitized solar cells. Eur J Org Chem 13:2608–2620

    Article  Google Scholar 

  23. Sudyoadsuk T, Pansay S, Morada S, Rattanawan R, Namuangruk S, Kaewin T, Jungsuttiwong S, Promarak V (2013) Synthesis and characterization of D–D–π–A-Type organic dyes bearing carbazole–carbazole as a donor moiety (D–D) for efficient dye-sensitized solar cells. Eur J Org Chem 23:5051–5063

    Article  Google Scholar 

  24. Sang-aroon W, Saekow S, Amornkitbamrung V (2012) Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J Photochem Photobiol A 236:35–40

    Article  CAS  Google Scholar 

  25. Nazeeruddin MK, Humphry-Baker R, Liska P, Grätzel M (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107(34):8981–8987

    Article  CAS  Google Scholar 

  26. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2007) Time-dependent density functional theory investigations on the excited states of Ru(II)-dye-sensitized TiO2 nanoparticles: the role of sensitizer protonation. J Am Chem Soc 129(46):14156–14157

    Article  Google Scholar 

  27. Angelis FD, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2010) First-principles modeling of the adsorption geometry and electronic structure of Ru(II) dyes on extended TiO2 substrates for dye-sensitized solar cell applications. J Phys Chem C 114(13):6054–6061

    Article  Google Scholar 

  28. J-i Nishida, Masuko T, Cui Y, Hara K, Shibuya H, Ihara M, Hosoyama T, Goto R, Mori S, Yamashita Y (2010) Molecular design of organic dye toward retardation of charge recombination at semiconductor/dye/electrolyte interface: introduction of twisted π-linker. J Phys Chem C 114(41):17920–17925

    Article  Google Scholar 

  29. Bahers TL, Pauporté T, Lainé PP, Labat F, Adamo C, Ciofini I (2013) Modeling dye-sensitized solar cells: from theory to experiment. J Phys Chem Lett 4(6):1044–1050

    Article  Google Scholar 

  30. Adamo C, Jacquemin D (2013) The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chem Soc Rev 42:845–856

    Article  CAS  Google Scholar 

  31. Pastore M, Fantacci S, Angelis FD (2013) Modeling excited states and alignment of energy levels in dye-sensitized solar cells: successes, failures, and challenges. J Phys Chem C 117(8):3685–3700

    Article  CAS  Google Scholar 

  32. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4(2):145–153

    Article  Google Scholar 

  33. Frisch MJ, Trucks GW, Schelegel HB et al (2003) GAUSSIAN 03, Revision B.05. Gaussian Inc., Pittsburgh

    Google Scholar 

  34. Tarsang R, Promarak V, Sudyoadsuk T, Namuangruk S, Jungsuttiwong S (2014) Tuning the electron donating ability in the triphenylamine-based D–π–A architecture for highly efficient dye-sensitized solar cells. J Photochem Photobiol A 273:8–16

    Article  CAS  Google Scholar 

  35. O’boyle NM, Tenderholt AL, Langner KM (2007) cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29(5):839–845

    Article  Google Scholar 

  36. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115(10):4708–4717

    Article  CAS  Google Scholar 

  37. Ordon P, Tachibana A (2005) Investigation of the role of the C-PCM solvent effect in reactivity indices. J Chem Sci 117(5):583–589

    Article  CAS  Google Scholar 

  38. Preat J, Jacquemina D, Perpètea EA (2010) Towards new efficient dye-sensitised solar cells. Energy Environ Sci 3:891–904

    Article  CAS  Google Scholar 

  39. Fan W, Tan D, Deng W-Q (2012) Acene-modified triphenylamine dyes for dye-sensitized solar cells: a computational study. ChemPhysChem 13(8):2051–2060

    Article  CAS  Google Scholar 

  40. Zhang J, Li H-B, Sun S-L, Geng Y, Wua Y, Su Z-M (2012) Density functional theory characterization and design of high-performance diarylamine-fluorene dyes with different π spacers for dye-sensitized solar cells. J Mater Chem 22:568–576

    Article  CAS  Google Scholar 

  41. Xu J, Zhu L, Fang D, Chen B, Liu L, Wang L, Xu W (2012) Substituent effect on the π linkers in triphenylamine dyes for sensitized solar cells: a DFT/TDDFT study. ChemPhysChem 13(14):3320–3329

    Article  CAS  Google Scholar 

  42. Asbury J, Wang Y-Q, Hao E, Ghosh H, Lian T (2001) Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline thin films. Res Chem Intermed 27(4–5):393–406

    Article  CAS  Google Scholar 

  43. Pastore M, Fantacci S, De Angelis F (2010) Ab initio determination of ground and excited state oxidation potentials of organic chromophores for dye-sensitized solar cells. J Phys Chem C 114(51):22742–22750

    Article  CAS  Google Scholar 

  44. Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923

    Article  CAS  Google Scholar 

  45. Kleinhenz N, Yang L, Zhou H, Price SC, You W (2012) Low-Band-gap polymers that utilize quinoid resonance structure stabilization by thienothiophene: fine-tuning of HOMO level. Macromolecules 44(4):872–877

    Article  Google Scholar 

  46. Kaewpuang T (2012) Synthesis and characterization of novel organic materials for dye sensititized solar cells and organic light emitting diodes. Thesis, Faculty of Science, Ratchathani University

  47. Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) Molecular design of Coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B 107(2):597–606

    Article  CAS  Google Scholar 

  48. Gong J, Liang J, Sumathy K (2012) Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew Sustain Energy Rev 16(8):5848–5860

    Article  CAS  Google Scholar 

  49. Lundqvist MJ, Nilsing M, Lunell S (2006) Spacer and anchor effects on the electronic coupling in ruthenium-bis-terpyridine dye-sensitized TiO2 nanocrystals studied by DFT. J Phys Chem B 110(41):20513–20525

    Article  CAS  Google Scholar 

  50. Ciofini I, Bahers TL, Adamo C, Odobel F, Jacquemin D (2012) Through-space charge transfer in rod-like molecules: lessons from theory. J Phys Chem C 116(22):11946–11955

    Article  CAS  Google Scholar 

  51. Srinivas K, Yesudas K, Bhanuprakash K, Rao VJ, Giribabu L (2009) A combined experimental and computational investigation of anthracene based sensitizers for DSSC: comparison of cyanoacrylic and malonic acid electron withdrawing groups binding onto the TiO2 anatase (101) surface. J Phys Chem C 113(46):20117–20126

    Article  CAS  Google Scholar 

  52. Lee KE, Gomez MA, Elouatik S, Demopoulos GP (2010) Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir 26(12):9575–9583

    Article  CAS  Google Scholar 

  53. Pal SK, Bhattacharaya S, Batabyal SK, Pradhan TK, Ganguly T (2007) Role of TiO2 nanoparticles on the photoinduced intramolecular electron-transfer reaction within a novel synthesized donor–acceptor system. J Photochem Photobiol A 189(1):86–93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Chiang Mai University and the National Research Council of Thailand for financial support and the Ministry of Energy for a grant to purchase computer hardwares. The computer facility at the Nanoscale Simulation Laboratory in the National Nanotechnology Center (NANOTEC), Pathumthani, and at the Department of Chemistry, Faculty of Science, Chiang Mai University, and Chiang Mai, Thailand, are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawee Kungwan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2014_1534_MOESM1_ESM.docx

Frontier molecular orbitals of B1-B6 relevant to the excitation in absorbance determined by B3LYP/6-31G(d,p), and the superimposed set of all simulated absorption spectra (DOCX 779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namuangruk, S., Meeprasert, J., Jungsuttiwong, S. et al. Organic sensitizers with modified di(thiophen-2-yl)phenylamine donor units for dye-sensitized solar cells: a computational study. Theor Chem Acc 133, 1534 (2014). https://doi.org/10.1007/s00214-014-1534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1534-1

Keywords

Navigation