Log in

Protective effects of apigenin on altered lipid peroxidation, inflammation, and antioxidant factors in methotrexate-induced hepatotoxicity

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Methotrexate (MTX) is used as an effective chemotherapeutic agent against autoimmune diseases and tumors. Oxidative stress and inflammation are involved in the pathogenesis of MTX-induced damage. This study aimed at examining the ameliorating effects of apigenin (API) as a natural antioxidant on MTX-induced hepatotoxicity. The rats were classified into four groups: group I: normal saline-treated, group II: MTX-treated (20 mg/kg, ip, single dose at day 7), group III: MTX + API–treated (20 mg/kg, po), and group IV: API-treated. API was administrated for 9 days. Alanine aminotransferase (ALT), alkaline phosphatase (ALP), and aspartate aminotransferase (AST) were used as biochemical factors of MTX-induced hepatic injury. In hepatic tissues, the levels of malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), and activities of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) as oxidative stress markers along with inflammatory factors such as tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL-1β) were assessed. Our results showed that MTX administration significantly increased ALP, ASP, ALT, MDA, NO, TNF-α, and IL-1β levels and significantly decreased antioxidant factors such as GSH, CAT, GPx, and SOD. The API pretreatment group showed a significant rise in hepatic antioxidant markers, besides significant reductions in the serum levels of AST, ALT, and ALP and hepatic content of MDA, TNF-α, NO, and IL-1β. In addition, the hepatoprotective effect of API was confirmed by histological evaluation of the liver. API can prevent MTX-induced hepatotoxicity through mitigation of oxidative stress and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abo-Haded HM, Elkablawy MA, Al-Johani Z, Al-ahmadi O, El-Agamy DS (2017) Hepatoprotective effect of sitagliptin against methotrexate induced liver toxicity. PLoS One 12:e0174295

    PubMed  PubMed Central  Google Scholar 

  • Ali F, Naz F, Jyoti S, Siddique YH (2014a) Protective effect of apigenin against N-nitrosodiethylamine (NDEA)-induced hepatotoxicity in albino rats. Mutat Res Genet Toxicol Environ Mutagen 767:13–20

    CAS  PubMed  Google Scholar 

  • Ali N, Rashid S, Nafees S, Hasan SK, Sultana S (2014b) Beneficial effects of Chrysin against Methotrexate-induced hepatotoxicity via attenuation of oxidative stress and apoptosis. Mol Cell Biochem 385:215–223

    CAS  PubMed  Google Scholar 

  • Androutsopoulos VP, Spandidos DA (2013) The flavonoids diosmetin and luteolin exert synergistic cytostatic effects in human hepatoma HepG2 cells via CYP1A-catalyzed metabolism, activation of JNK and ERK and P53/P21 up-regulation. J Nutr Biochem 24:496–504

    CAS  PubMed  Google Scholar 

  • Archer S (1993) Measurement of nitric oxide in biological models. FASEB J 7:349–360

    CAS  PubMed  Google Scholar 

  • Basile A, Giordano S, López-Sáez JA, Cobianchi RC (1999) Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 52:1479–1482

    CAS  PubMed  Google Scholar 

  • Bergmeyer H, Horder M, Rej R (1986) International Federation of Clinical Chemistry (Ifcc) 1), 2. J Clin Chem Clin Biochem 24:481-495

  • Buege J.A., Aust S.D. (1978) [30] Microsomal lipid peroxidation, methods in enzymology, Elsevier. pp. 302-310

  • Çetin A, Kaynar L, Kocyigit I, Hacioglu SK, Saraymen R, Ozturk A, Sari I, Sagdic O (2008) Role of grape seed extract on methotrexate induced oxidative stress in rat liver. Am J Chin Med 36:861–872

    PubMed  Google Scholar 

  • Dalaklioglu S, Genc G, Aksoy N, Akcit F, Gumuslu S (2013) Resveratrol ameliorates methotrexate-induced hepatotoxicity in rats via inhibition of lipid peroxidation. Hum Exp Toxicol 32:662–671

    CAS  PubMed  Google Scholar 

  • Danaei GH, Memar B, Ataee R, Karami M (2019) Protective effect of thymoquinone, the main component of Nigella Sativa, against diazinon cardio-toxicity in rats. Drug Chem Toxicol 42:585–591

    CAS  PubMed  Google Scholar 

  • Elsawy H, Algefare AI, Alfwuaires M, Khalil M, Elmenshawy OM, Sedky A, Abdel-Moneim AM (2020) Naringin alleviates methotrexate-induced liver injury in male albino rats and enhances its antitumor efficacy in HepG2 cells. Biosci Rep 40

  • Fang Y-Z, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    CAS  PubMed  Google Scholar 

  • Fu Z, Zhen W, Yuskavage J, Liu D (2011) Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice. Br J Nutr 105:1218–1225

    CAS  PubMed  Google Scholar 

  • García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 58:537–552

    PubMed  Google Scholar 

  • Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, Louie SG, Petasis NA, Chen TC, Schönthal AH (2009) Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid–based proteasome inhibitors. Blood 113:5927–5937

    CAS  PubMed  Google Scholar 

  • Guthrie N, Carroll K (1998) Inhibition of mammary cancer by citrus flavonoids. Flavonoids in the living system, Springer. pp. 227-236

  • Hafez HM, Ibrahim MA, Ibrahim SA, Amin EF, Goma W, Abdelrahman AM (2015) Potential protective effect of etanercept and aminoguanidine in methotrexate-induced hepatotoxicity and nephrotoxicity in rats. Eur J Pharmacol 768:1–12

    CAS  PubMed  Google Scholar 

  • Harmon AW, Patel YM (2004) Naringenin inhibits glucose uptake in MCF-7 breast cancer cells: a mechanism for impaired cellular proliferation. Breast Cancer Res Treat 85:103–110

    CAS  PubMed  Google Scholar 

  • He X-L, Wang Y-H, Bi M-G, Du G-H (2012) Chrysin improves cognitive deficits and brain damage induced by chronic cerebral hypoperfusion in rats. Eur J Pharmacol 680:41–48

    CAS  PubMed  Google Scholar 

  • Hegab II, El-Horany HES, Elbatsh MM, Helal DS (2019) Montelukast abrogates prednisolone-induced hepatic injury in rats: modulation of mitochondrial dysfunction, oxidative/nitrosative stress, and apoptosis. J Biochem Mol Toxicol 33:e22231

    Google Scholar 

  • Herfarth HH (2016) Methotrexate for inflammatory bowel diseases-new developments. Dig Dis 34:140–146

    PubMed  PubMed Central  Google Scholar 

  • Howard SC, McCormick J, Pui C-H, Buddington RK, Harvey RD (2016) Preventing and managing toxicities of high-dose methotrexate. Oncologist 21:1471–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao Y-C, Hsieh Y-S, Kuo W-H, Chiou H-L, Yang S-F, Chiang W-L, Chu S-C (2007) The tumor-growth inhibitory activity of flavanone and 2′-OH flavanone in vitro and in vivo through induction of cell cycle arrest and suppression of cyclins and CDKs. J Biomed Sci 14:107–119

    CAS  PubMed  Google Scholar 

  • Huang X-J, Choi Y-K, Im H-S, Yarimaga O, Yoon E, Kim H-S (2006) Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6:756–782

    CAS  Google Scholar 

  • Hytiroglou P, Tobias H, Saxena R, Abramidou M, Papadimitriou CS, Theise ND (2004) The canals of hering might represent a target of methotrexate hepatic toxicity. Am J Clin Pathol 121:324–329

    CAS  PubMed  Google Scholar 

  • ** B-h, Qian L-b, Chen S, Li J, Wang H-p, Bruce IC, Lin J, **a Q (2009a) Apigenin protects endothelium-dependent relaxation of rat aorta against oxidative stress. Eur J Pharmacol 616:200–205

    CAS  PubMed  Google Scholar 

  • ** C-Y, Park C, Lee J-H, Chung KT, Kwon TK, Kim G-Y, Choi BT, Choi YH (2009b) Naringenin-induced apoptosis is attenuated by Bcl-2 but restored by the small molecule Bcl-2 inhibitor, HA 14-1, in human leukemia U937 cells. Toxicol in Vitro 23:259–265

    CAS  PubMed  Google Scholar 

  • Kalantar M, Shirali S, Hasanvand A, Valizadeh M, Tavakoli R, Asadi M, Goudarzi M (2017) Ameliorative effects of hydroalcoholic extract of lavandula officinalis l. on methotrexate-induced oxidative stress in rats. Pharm Sci 23:18–26

    Google Scholar 

  • Kalantar M, Kalantari H, Goudarzi M, Khorsandi L, Bakhit S, Kalantar H (2019) Crocin ameliorates methotrexate-induced liver injury via inhibition of oxidative stress and inflammation in rats. Pharmacol Rep 71:746–752

    CAS  PubMed  Google Scholar 

  • Kang O-H, Lee J-H, Kwon D-Y (2011) Apigenin inhibits release of inflammatory mediators by blocking the NF-κB activation pathways in the HMC-1 cells. Immunopharmacol Immunotoxicol 33:473–479

    CAS  PubMed  Google Scholar 

  • Khalifa MM, Bakr AG, Osman AT (2017) Protective effects of phloridzin against methotrexate-induced liver toxicity in rats. Biomed Pharmacother 95:529–535

    CAS  PubMed  Google Scholar 

  • Kim TY, Park J, Oh B, Min HJ, Jeong TS, Lee JH, Suh C, Cheong JW, Kim HJ, Yoon SS (2009) Natural polyphenols antagonize the antimyeloma activity of proteasome inhibitor bortezomib by direct chemical interaction. Br J Haematol 146:270–281

    CAS  PubMed  Google Scholar 

  • Koyama S, Sato E, Takamizawa A, Tsukadaira A, Haniuda M, Kurai M, Numanami H, Nagai S, Izumi T (2003) Methotrexate stimulates lung epithelial cells to release inflammatory cell chemotactic activities. Exp Lung Res 29:91–111

    CAS  PubMed  Google Scholar 

  • Kuhar M, Imran S, Singh N (2007) Curcumin and quercetin combined with cisplatin to induce apoptosis in human laryngeal carcinoma Hep-2 cells through the mitochondrial pathway. J Cancer Mol 3:121–128

    CAS  Google Scholar 

  • Lee E-J, Oh S-Y, Sung M-K (2012) Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem Toxicol 50:4136–4143

    CAS  PubMed  Google Scholar 

  • Lefort ÉC, Blay J (2013) Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res 57:126–144

    CAS  PubMed  Google Scholar 

  • Lindenmeyer F, Li H, Menashi S, Soria C, Lu H (2001) Apigenin acts on the tumor cell invasion process and regulates protease production. Nutr Cancer 39:139–147

    CAS  PubMed  Google Scholar 

  • Lu X, Jung Ji, Cho HJ, Lim DY, Lee HS, Chun HS, Kwon DY, Park JH (2005) Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J Nutr 135:2884–2890

    CAS  PubMed  Google Scholar 

  • Mahbub A, Le Maitre C, Haywood-Small S, Cross N, Jordan-Mahy N (2015a) Glutathione is key to the synergistic enhancement of doxorubicin and etoposide by polyphenols in leukaemia cell lines. Cell Death Dis 6:e2028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahbub A, Le Maitre C, Haywood-Small S, Cross N, Jordan-Mahy N (2015b) Polyphenols act synergistically with doxorubicin and etoposide in leukaemia cell lines. Cell Death Dis 1:1–12

    Google Scholar 

  • Mahbub A, Le Maitre C, Haywood-Small S, Cross N, Jordan-Mahy N (2017) Dietary polyphenols influence antimetabolite agents: methotrexate, 6-mercaptopurine and 5-fluorouracil in leukemia cell lines. Oncotarget 8:104877–104893

    PubMed  PubMed Central  Google Scholar 

  • Maritim A, Sanders R, Watkins IJ (2003) Effects of α-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats. J Nutr Biochem 14:288–294

    CAS  PubMed  Google Scholar 

  • Meeran MFN, Laham F, Al-Taee H, Azimullah S, Ojha S (2018) Protective effects of α-bisabolol on altered hemodynamics, lipid peroxidation, and nonenzymatic antioxidants in isoproterenol-induced myocardial infarction: In vivo and in vitro evidences. J Biochem Mol Toxicol 32:e22200

    PubMed  Google Scholar 

  • Mehrzadi S, Fatemi I, Esmaeilizadeh M, Ghaznavi H, Kalantar H, Goudarzi M (2018) Hepatoprotective effect of berberine against methotrexate induced liver toxicity in rats. Biomed Pharmacother 97:233–239

    CAS  PubMed  Google Scholar 

  • Morales P, Haza AI (2012) Selective apoptotic effects of piceatannol and myricetin in human cancer cells. J Appl Toxicol 32:986–993

    CAS  PubMed  Google Scholar 

  • Mukherjee S, Banerjee SK, Maulik M, Dinda AK, Talwar KK, Maulik SK (2003) Protection against acute adriamycin-induced cardiotoxicity by garlic: role of endogenous antioxidants and inhibition of TNF-α expression. BMC Pharmacol 3:16

    PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Ghosh S, Choudhury S, Adhikary A, Manna K, Dey S, Sa G, Das T, Chattopadhyay S (2013) Pomegranate reverses methotrexate-induced oxidative stress and apoptosis in hepatocytes by modulating Nrf2-NF-κB pathways. J Nutr Biochem 24:2040–2050

    CAS  PubMed  Google Scholar 

  • Ou Y-C, Kuan Y-H, Li J-R, Raung S-L, Wang C-C, Hung Y-Y, Chen C-J (2013) Induction of apoptosis by luteolin involving akt inactivation in human 786-o renal cell carcinoma cells. Evid Based Complement Alternat Med 2013

  • Padma VV, Baskaran R, Roopesh RS, Poornima P (2012) Quercetin attenuates lindane induced oxidative stress in wistar rats. Mol Biol Rep 39:6895–6905

    CAS  PubMed  Google Scholar 

  • Prakash M, Basavaraj B, Murthy KC (2019) Biological functions of epicatechin: plant cell to human cell health. J Funct Foods 52:14–24

    CAS  Google Scholar 

  • Pritchard JC, Burn CC, Barr AR, Whay HR (2009) Haematological and serum biochemical reference values for apparently healthy working horses in Pakistan. Res Vet Sci 87:389–395

    CAS  PubMed  Google Scholar 

  • Ramesh E, Alshatwi AA (2013) Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol 51:97–105

    CAS  PubMed  Google Scholar 

  • Rao PS, Satelli A, Moridani M, Jenkins M, Rao US (2012) Luteolin induces apoptosis in multidrug resistant cancer cells without affecting the drug transporter function: involvement of cell line-specific apoptotic mechanisms. Int J Cancer 130:2703–2714

    CAS  PubMed  Google Scholar 

  • Roghani M, Kalantari H, Khodayar MJ, Khorsandi L, Kalantar M, Goudarzi M, Kalantar H (2020) Alleviation of liver dysfunction, oxidative stress and inflammation underlies the protective effect of ferulic acid in methotrexate-induced hepatotoxicity. Drug Des Devel Ther 14:1933–1941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross D (1988) Glutathione, free radicals and chemotherapeutic agents: mechanisms of free-radical induced toxicity and glutathione-dependent protection. Pharmacol Ther 37:231–249

    CAS  PubMed  Google Scholar 

  • Safaei F, Mehrzadi S (2018) Protective effects of gallic acid against methotrexate-induced toxicity in rats 118:152-160. DOI: https://doi.org/10.1080/00015458.2017.1394672.

  • Samuel T, Fadlalla K, Mosley L, Katkoori V, Turner T, Manne U (2012) Dual-mode interaction between quercetin and DNA-damaging drugs in cancer cells. Anticancer Res 32:61–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schumann G, Klauke R, Canalias F, Bossert-Reuther S, Franck PF, Gella F-J, Jørgensen PJ, Kang D, Lessinger J-M, Panteghini M (2011) IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37° C. Part 9: Reference procedure for the measurement of catalytic concentration of alkaline phosphatase: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Scientific Division, Committee on Reference Systems of Enzymes (C-RSE) 1. Clin Chem Lab Med (CCLM) 49:1439–1446

    CAS  Google Scholar 

  • Shen S-C, Ko CH, Tseng S-W, Tsai S-H, Chen Y-C (2004) Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production. Toxicol Appl Pharmacol 197:84–95

    CAS  PubMed  Google Scholar 

  • Siddique YH, Afzal M (2009) Antigenotoxic effect of apigenin against mitomycin C induced genotoxic damage in mice bone marrow cells. Food Chem Toxicol 47:536–539

    CAS  PubMed  Google Scholar 

  • Siddique YH, Beg T, Afzal M (2008) Antigenotoxic effect of apigenin against anti-cancerous drugs. Toxicol in Vitro 22:625–631

    CAS  PubMed  Google Scholar 

  • Siddique YH, Ara G, Beg T, Afzal M (2010) Anticlastogenic effect of apigenin in human lymphocytes treated with ethinylestradiol. Fitoterapia 81:590–594

    CAS  PubMed  Google Scholar 

  • Somasundaram S, Edmund NA, Moore DT, Small GW, Shi YY, Orlowski RZ (2002) Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res 62:3868–3875

    CAS  PubMed  Google Scholar 

  • Staedler D, Idrizi E, Kenzaoui BH, Juillerat-Jeanneret L (2011) Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother Pharmacol 68:1161–1172

    CAS  PubMed  Google Scholar 

  • Thangaiyan R, Robert BM, Arjunan S, Govindasamy K, Nagarajan RP (2018) Preventive effect of apigenin against isoproterenol-induced apoptosis in cardiomyoblasts. J Biochem Mol Toxicol 32:e22213

    PubMed  Google Scholar 

  • Tracey WR, Linden J, Peach MJ, Johns RA (1990) Comparison of spectrophotometric and biological assays for nitric oxide (NO) and endothelium-derived relaxing factor (EDRF): nonspecificity of the diazotization reaction for NO and failure to detect EDRF. J Pharmacol Exp Ther 252:922–928

    CAS  PubMed  Google Scholar 

  • Turesson C, Matteson EL (2006) Genetics of rheumatoid arthritis, Mayo Clinic Proceedings, Elsevier. pp. 94-101

  • Uraz S, Tahan V, Aygun C, Eren F, Unluguzel G, Yuksel M, Senturk O, Avsar E, Haklar G, Celikel C (2008) Role of ursodeoxycholic acid in prevention of methotrexate-induced liver toxicity. Dig Dis Sci 53:1071–1077

    CAS  PubMed  Google Scholar 

  • Uz E, Söğüt S, Şahin Ş, Var A, Özyurt H, Güleç M, Akyol Ö (2002) The protective role of caffeic acid phenethyl ester (CAPE) on testicular tissue after testicular torsion and detorsion. World J Urol 20:264–270

    CAS  PubMed  Google Scholar 

  • Uzar E, Koyuncuoglu HR, Uz E, Yilmaz HR, Kutluhan S, Kilbas S, Gultekin F (2006a) The activities of antioxidant enzymes and the level of malondialdehyde in cerebellum of rats subjected to methotrexate: protective effect of caffeic acid phenethyl ester. Mol Cell Biochem 291:63–68

    CAS  PubMed  Google Scholar 

  • Uzar E, Sahin O, Koyuncuoglu HR, Uz E, Bas O, Kilbas S, Yilmaz HR, Yurekli VA, Kucuker H, Songur A (2006b) The activity of adenosine deaminase and the level of nitric oxide in spinal cord of methotrexate administered rats: protective effect of caffeic acid phenethyl ester. Toxicology 218:125–133

    CAS  PubMed  Google Scholar 

  • Wang J, Liu Y-T, **ao L, Zhu L, Wang Q, Yan T (2014) Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation 37:2085–2090

    CAS  PubMed  Google Scholar 

  • Yang J, Wang X-Y, Xue J, Gu Z-L, **e M-L (2013a) Protective effect of apigenin on mouse acute liver injury induced by acetaminophen is associated with increment of hepatic glutathione reductase activity. Food Funct 4:939–943

    CAS  PubMed  Google Scholar 

  • Yang Y, Wolfram J, Boom K, Fang X, Shen H, Ferrari M (2013b) Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell Biochem Funct 31:374–379

    CAS  PubMed  Google Scholar 

  • Yousef M, Saad A, El-Shennawy L (2009) Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats. Food Chem Toxicol 47:1176–1183

    CAS  PubMed  Google Scholar 

  • Yuan J, Li W, Tian Y, Wang X (2013) Anti-proliferative effect of Flos Albiziae flavonoids on the human gastric cancer SGC-7901 cell line. Exp Ther Med 5:51–56

    CAS  PubMed  Google Scholar 

Download references

Funding

This experiment was kindly supported by the Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran (Grant No: MPRC-9614).

Author information

Authors and Affiliations

Authors

Contributions

HK and MG conceived and designed the study. MK and MHK performed experiments. HK, MG, and ES analyzed data. HK and ES wrote the manuscript. All authors read and approved the manuscript. All data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Hadi Kalantar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudarzi, M., Kalantar, M., Sadeghi, E. et al. Protective effects of apigenin on altered lipid peroxidation, inflammation, and antioxidant factors in methotrexate-induced hepatotoxicity. Naunyn-Schmiedeberg's Arch Pharmacol 394, 523–531 (2021). https://doi.org/10.1007/s00210-020-01991-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-020-01991-2

Keywords

Navigation