Log in

A new method toward the Landau–Ginzburg/Calabi–Yau correspondence via quasi-maps

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The Landau–Ginzburg/Calabi–Yau correspondence claims that the Gromov–Witten invariant of the quintic Calabi–Yau 3-fold should be related to the Fan–Jarvis–Ruan–Witten invariant of the associated Landau–Ginzburg model via wall crossings. In this paper, we consider the stack of quasi-maps with a cosection and introduce sequences of stability conditions which enable us to interpolate between the moduli stack for Gromov–Witten invariants and the moduli stack for Fan–Jarvis–Ruan–Witten invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramovich, D., Vistoli, A.: Compactifying the space of stable maps. J. Am. Math. Soc. 15, 27–75 (2001)

    Article  MathSciNet  Google Scholar 

  2. Alexeev, V.: Compactified Jacobians and Torelli map. Publ. Res. Inst. Math. Sci. 40, 1241–1265 (2004)

    Article  MathSciNet  Google Scholar 

  3. Caporaso, L.: A compactification of the universal Picard variety over the moduli space of stable curves. J. Am. Math. Soc. 7(3), 589–660 (1994)

    Article  MathSciNet  Google Scholar 

  4. Chang, H.-L., Li, J.: Gromov–Witten invariants of stable maps with fields. Int. Math. Res. Not. 18, 4163–4217 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Chang, H.-L., Kiem, Y.-H., Li, J.: Torus localization and wall crossing formulas for cosection localized virtual cycles. Adv. Math. 308, 964–986 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chang, H.-L., Li, J., Li, W.-P.: Wittens top Chern class via cosection localization. Invent. Math. 200(3), 1015–1063 (2015). https://doi.org/10.1007/s00222-014-0549-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, H.-L., Li, J., Li, W.-P., Liu, C.M.: Mixed-spin-P fields of Fermat quintic polynomials. ar**v:1505.07532

  8. Cheong, D.: A relative stack of principal \(G\) -bundles over \({\cal{M}}^{tw}_{g, n}\). Int. J. Algebra Comput. 25(3), 481–492 (2015)

    Article  Google Scholar 

  9. Cheong, D., Ciocan-Fontanine, I., Kim, B.: Orbifold quasimap theory. Math. Ann. 363(3), 777–816 (2015)

    Article  MathSciNet  Google Scholar 

  10. Chiodo, A.: Stable twisted curves and their \(r\) -spin structures. Ann. Inst. Fourier 58(5), 1635–1689 (2008)

    Article  MathSciNet  Google Scholar 

  11. Chiodo, A., Ruan, Y.: Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations. Invent. Math. 182(1), 117–165 (2010)

    Article  MathSciNet  Google Scholar 

  12. Choi, J., Chung, K.: Moduli spaces of \(\alpha \)-stable pairs and wall-crossing on \({\mathbb{P}}^2\). J. Math. Soc. Jpn. 68(2), 685–709 (2016)

    Article  Google Scholar 

  13. Choi, J., Kiem, Y.-H.: Landau–Ginzburg/Calabi–Yau correspondence via wall-crossing. Chin. Ann. Math. Ser. B 38(4), 883–900 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ciocan-Fontanine, I., Kim, B.: Moduli stacks of stable toric quasimaps. Adv. Math. 225, 3022–3051 (2010)

    Article  MathSciNet  Google Scholar 

  15. Ciocan-Fontanine, I., Kim, B.: Wall-crossing in genus zero quasimap theory and mirror maps. Algebr. Geom. 1(4), 400–448 (2014)

    Article  MathSciNet  Google Scholar 

  16. Ciocan-Fontanine, I., Kim, B.: Higher genus quasimap wall-crossing for semi-positive targets. J. Eur. Math. Soc. 19(7), 2051–2102 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ciocan-Fontanine, I., Kim, B., Maulik, D.: Stable quasimaps to GIT quotients. J. Geom. Phys. 75, 17–47 (2014)

    Article  MathSciNet  Google Scholar 

  18. Clader, E.: Landau–Ginzburg/Calabi–Yau correspondence for the complete intersections \(X_{3,3}\) and \(X_{2,2,2,2}\). Adv. Math. 307, 1–52 (2017)

    Article  MathSciNet  Google Scholar 

  19. Edidin, D.: Notes on the Construction of the Moduli Space of Curves. Recent Progress in Intersection Theory (Bologna, 1997), pp. 85–113, Trends in Mathematics. Birkhauser, Boston (2000)

    Chapter  Google Scholar 

  20. Faltings, G.: Moduli-stacks for bundles on semistable curves. Math. Ann. 304, 489–515 (1996)

    Article  MathSciNet  Google Scholar 

  21. Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. 178, 1–106 (2013)

    Article  MathSciNet  Google Scholar 

  22. Fan, H., Jarvis, T., Ruan, Y.: A mathematical theory of the gauged linear sigma model. Geom. Topol. 22(1), 235–303 (2018)

    Article  MathSciNet  Google Scholar 

  23. Fulton, W., MacPherson, R.: A compactification of configuration spaces. Ann. Math. 139(1), 183–225 (1994)

    Article  MathSciNet  Google Scholar 

  24. Guo, S., Ross, D.: The genus-one global mirror theorem for the quintic threefold. Algebr. Geom. (to appear)

  25. Huybrechts, D., Lehn, M.: Framed modules and their moduli. Int. J. Math. 6, 297–324 (1995)

    Article  MathSciNet  Google Scholar 

  26. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves. Aspects of Mathematics, E31. Friedr. Vieweg Sohn, Braunschweig (1997)

    Book  Google Scholar 

  27. Keel, S.: Intersection theory of moduli space of stable \(n\)-pointed curves of genus zero. Trans. Am. Math. Soc. 330(2), 545–574 (1992)

    MathSciNet  MATH  Google Scholar 

  28. Kiem, Y.-H., Li, J.: Localizing virtual cycles by cosections. J. Am. Math. Soc. 26(4), 1025–1050 (2013)

    Article  MathSciNet  Google Scholar 

  29. Kiem, Y.-H., Li, J.: A wall crossing formula of Donaldson–Thomas invariants without Chern–Simons functional. Asian J. Math. 17(1), 63–94 (2013)

    Article  MathSciNet  Google Scholar 

  30. Kiem, Y.-H., Moon, H.-B.: Moduli space of weighted pointed stable rational curves via GIT. Osaka J. Math. 48, 1115–1140 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Le Potier, J.: Systmes cohrents et structures de niveau. Asterisque No. 214 (1993)

  32. Lee, Y.-P., Priddis, N., Shoemaker, M.: A proof of the Landau–Ginzburg/Calabi–Yau correspondence via the crepant transformation conjecture. Ann. Sci. Éc. Norm. Supér. (4) 49(6), 1403–1443 (2016)

    Article  MathSciNet  Google Scholar 

  33. Li, L.: Chow motive of Fulton–MacPherson configuration spaces and wonderful compactifications. Mich. Math. J. 58(2), 565–598 (2009)

    Article  MathSciNet  Google Scholar 

  34. Manolache, C.: Virtual pushforwards. Geom. Topol. 16(4), 2003–2036 (2012)

    Article  MathSciNet  Google Scholar 

  35. Marian, A., Oprea, D., Pandharipande, R.: The moduli space of stable quotients. Geom. Topol. 15(3), 1651–1706 (2011)

    Article  MathSciNet  Google Scholar 

  36. Ross, D., Ruan, Y.: Wall-crossing in genus zero Landau–Ginzburg theory. J. Reine. Angew. Math. https://doi.org/10.1515/crelle-2015-0005

  37. Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes tudes Sci. Publ. Math. 79, 47–129 (1994)

    Article  MathSciNet  Google Scholar 

  38. Toda, Y.: Moduli spaces of stable quotients and wall crossing phenomena. Composit. Math. 147, 1479–1518 (2011)

    Article  MathSciNet  Google Scholar 

  39. Witten, E.: Phases of N = 2 theories in two dimensions. Nucl. Phys. B 403, 159–222 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Huai-Liang Chang, Emily Clader, Tyler Jarvis, Bumsig Kim, Jun Li and Yongbin Ruan for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **won Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**won Choi was supported by NRF Grants NRF-2015R1C1A1A01054185 and NRF-2018R1C1B6005600. Young-Hoon Kiem was partially supported by Samsung Science and Technology Foundation Grant SSTF-BA1601-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Kiem, YH. A new method toward the Landau–Ginzburg/Calabi–Yau correspondence via quasi-maps. Math. Z. 294, 161–199 (2020). https://doi.org/10.1007/s00209-019-02249-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02249-1

Mathematics Subject Classification

Navigation