Log in

Companions on Artin stacks

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Deligne’s conjecture that \(\ell \)-adic sheaves on normal schemes over a finite field admit \(\ell '\)-companions was proved by L. Lafforgue in the case of curves and by Drinfeld in the case of smooth schemes. In this paper, we extend Drinfeld’s theorem to smooth Artin stacks and deduce Deligne’s conjecture for coarse moduli spaces of smooth Artin stacks. We also extend related theorems on Frobenius eigenvalues and traces to Artin stacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For a short review of the property “geometrically unibranch”, see Remark 2.5.

  2. We adopt the convention that a q-Weil number of weight 0 is an algebraic number \(\alpha \) such that for every place \(\lambda \) of \(\mathbb {Q}(\alpha )\) not dividing q (finite or Archimedean), we have \(|\alpha |_\lambda =1\).

  3. Recall that a morphism of stacks is said to be finite if it is representable by schemes and finite.

References

  1. Abe, T.: Langlands correspondence for isocrystals and existence of crystalline companion for curves. J. Am. Math. Soc. 31(4), 921–1057 (2018). https://doi.org/10.1090/jams/898

    Article  MathSciNet  MATH  Google Scholar 

  2. Behrend, K.A.: Derived l-adic categories for algebraic stacks. Mem. Am. Math. Soc. 163(774), viii+93 (2003). https://doi.org/10.1090/memo/0774

    MathSciNet  MATH  Google Scholar 

  3. Beĭlinson, A. A., Bernstein, J., Deligne, P.: Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Asterisque, vol. 100, pp. 5–171. Soc. Math. France, Paris (1982) (French)

  4. Bénabou, J., Roubaud, J.: Monades et descente. C. R. Acad. Sci. Paris Sér. A–B 270, A96–A98 (1970). French

    MathSciNet  MATH  Google Scholar 

  5. Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitre 8. Modules et anneaux semi-simples, Second revised edition of the 1958 edition. Springer, Berlin (2012) (French)

  6. Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitres 4 à 7. Réimpression de l’édition de 1981. Springer (2007) (French)

  7. Chin, C.: Independence of \({\ell }\) in Lafforgue’s theorem. Adv. Math. 180(1), 64–86 (2003). https://doi.org/10.1016/S0001-8708(02)00082-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Curtis, C.W., Reiner, I.: Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, vol. XI. Interscience Publishers, New York (1962)

  9. Deligne, P., Katz, N.: Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, vol. 340. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II). Springer, Berlin (1973) (French)

  10. Deligne, P.: Les constantes des équations fonctionnelles des fonctions L, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math., vol. 349, pp. 501–597. Springer, Berlin (1973) (French)

  11. Deligne, P.: La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. 52, 137–252 (1980). (French)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deligne, P.: Finitude de l’extension de \({\mathbb{Q}}\) engendrée par des traces de Frobenius, en caractéristique finie. Mosc. Math. J. 12(3), 497-514–668 (2012). (French, with French and Russian summaries)

    MATH  Google Scholar 

  13. Drinfeld, V., Kedlaya, K.: Slopes of indecomposable F-isocrystals (2018). ar**v:1604.00660v9 (preprint)

  14. Drinfeld, V.: On a conjecture of Deligne. Mosc. Math. J. 12(3), 515-542–668 (2012). (English, with English and Russian summaries)

    MathSciNet  MATH  Google Scholar 

  15. Esnault, H., Kerz, M.: A finiteness theorem for Galois representations of function fields over finite fields (after Deligne). Acta Math. Vietnam. 37(4), 531–562 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Fujiwara, K.: Independence of l for intersection cohomology (after Gabber), Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., vol. 36, pp. 145–151. Math. Soc. Japan, Tokyo (2002)

  17. Giraud, J.: Méthode de la descente. Bull. Soc. Math. France Mém. 2, viii+150 (1964)

    MATH  Google Scholar 

  18. Grothendieck, A.: Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math., vol. 4, pp. 5–228 (1960) (Rédigés avec la collaboration de J. Dieudonné)

  19. Illusie, L.: Miscellany on traces in \({\ell }\)-adic cohomology: a survey. Jpn. J. Math. 1(1), 107–136 (2006). 10.1007/s11537-006-0504-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Illusie, L., Zheng, W.: Quotient stacks and equivariant étale cohomology algebras: Quillen’s theory revisited. J. Algebraic Geom. 25(2), 289–400 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Knutson, D.: Algebraic spaces. Lecture Notes in Mathematics, vol. 203. Springer, Berlin (1971)

  22. Lafforgue, L.: Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math. 147(1), 1–241 (2002). https://doi.org/10.1007/s002220100174. (French, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lafforgue, V.: Estimées pour les valuations p-adiques des valeurs propes des opérateurs de Hecke. Bull. Soc. Math. France 139(4), 455–477 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Laumon, G., Moret-Bailly, L.: Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 39. Springer, Berlin (2000)

  25. Laumon, G.: Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil. Inst. Hautes Études Sci. Publ. Math. 65, 131–210 (1987). (French)

    Article  MATH  Google Scholar 

  26. Mumford, D.: Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, With appendices by C. P. Ramanujam and Yuri Manin; Corrected reprint of the second (1974) edition. Tata Institute of Fundamental Research, Bombay, Hindustan Book Agency, New Delhi (2008)

  27. Noohi, B.: Fundamental groups of algebraic stacks. J. Inst. Math. Jussieu 3(1), 69–103 (2004). https://doi.org/10.1017/S1474748004000039

    Article  MathSciNet  MATH  Google Scholar 

  28. Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 3, Société Mathématique de France, Paris, 2003 (French). Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61]; Directed by A. Grothendieck; With two papers by M. Raynaud; Updated and annotated reprint of the 1971 original [Lecture Notes in Math., vol. 224, Springer, Berlin]

  29. Rydh, D.: Submersions and effective descent of étale morphisms. Bull. Soc. Math. France 138(2), 181–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sun, S.: Independence of \(\ell \) for the supports in the decomposition theorem. Duke Math. J. 167(10), 1803–1823 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, S.: L-series of Artin stacks over finite fields. Algebra Number Theory 6(1), 47–122 (2012). https://doi.org/10.2140/ant.2012.6.47

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, S.: Decomposition theorem for perverse sheaves on Artin stacks over finite fields. Duke Math. J. 161(12), 2297–2310 (2012). https://doi.org/10.1215/00127094-1723657

  33. Sun, S., Zheng, W.: Parity and symmetry in intersection and ordinary cohomology. Algebra Number Theory 10(2), 235–307 (2016). https://doi.org/10.2140/ant.2016.10.235

    Article  MathSciNet  MATH  Google Scholar 

  34. The Stacks Project Authors: Stacks Project. http://stacks.math.columbia.edu

  35. Théorie des topos et cohomologie étale des schémas, Lecture Notes in Mathematics, vol. 269, 270, 305, Springer-Verlag, Berlin, 1972–1973. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat

  36. Voevodsky, V.: Homology of schemes. Selecta Math. (N.S.) 2(1), 111–153 (1996). https://doi.org/10.1007/BF01587941

    Article  MathSciNet  MATH  Google Scholar 

  37. Zheng, W.: Théorème de Gabber d’indépendance de l, Mémoire de Master deuxième année (2005) (French). ar**v:1608.06191

  38. Zheng, W.: Sur la cohomologie des faisceaux l-adiques entiers sur les corps locaux. Bull. Soc. Math. France 136(3), 465–503 (2008). (French, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zheng, W.: Sur l’indépendance de \(l\) en cohomologie l-adique sur les corps locaux. Ann. Sci. Éc. Norm. Supér. (4) 42(2), 291–334 (2009). (French, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper grows out of an answer to Shenghao Sun’s question of extending the theorems of Deligne and Drinfeld to stacks. I thank Yongquan Hu, Yifeng Liu, Martin Olsson, and Shenghao Sun for useful discussions, and Vladimir Drinfeld and Luc Illusie for valuable comments. I am grateful to Ofer Gabber for pointing out a mistake in a draft of this paper. I thank the referee for a careful reading of the manuscript and many helpful comments. Part of this paper was written during a stay at Shanghai Center for Mathematical Sciences and I thank the center for hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhe Zheng.

Additional information

Partially supported by China’s Recruitment Program of Global Experts; National Natural Science Foundation of China Grants 11321101, 11621061, 11688101; National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences.

Appendix: Structure of pure perverse sheaves

Appendix: Structure of pure perverse sheaves

The goal of this appendix is to prove the geometric semisimplicity of pure perverse sheaves (Theorem 6.1).

Let \(\iota :\overline{\mathbb {Q}_\ell }\rightarrow \mathbb {C}\) be an embedding. Let X be a stack. Let \(w\in \mathbb {R}\) and let \(K\in D(X,\overline{\mathbb {Q}_\ell })\). We say that K has \(\iota \)-weights\(\le w\) if the ith cohomology sheaf \(\mathcal {H}^i K\) of K has punctual \(\iota \)-weights \(\le w+i\) for all i, and K has \(\iota \)-weights \(\ge w\) if DK has \(\iota \)-weights \(\le -w\). We say that K is \(\iota \)-pure of weight w if it has \(\iota \)-weights \(\le w\) and \(\ge w\).

Theorem 6.1

Let X be a stack and let \(\mathcal {P}\) be an \(\iota \)-pure perverse Weil \(\overline{\mathbb {Q}_\ell }\)-sheaf on X. Then the pullback of \(\mathcal {P}\) to \(X\otimes _{\mathbb {F}_q} \overline{\mathbb {F}_q}\) is semisimple.

The case of affine stabilizers is a theorem of Sun [32, Theorem 3.11], extending the case of schemes [3, Théorème 5.3.8]. Note that the decomposition theorem of pure complexes [32, Theorem 3.12] does not extend to general stacks, as shown in [32, Section 1].

As in the case of schemes [3, Proposition 5.3.9], Theorem 6.1 has the following consequence on the structure of pure perverse sheaves. As before we let \(\mathcal {E}_n\) denote the \(\overline{\mathbb {Q}_\ell }\)-sheaf on \(\mathrm {Spec}(\mathbb {F}_q)\) of stalk \(\overline{\mathbb {Q}_\ell }^n\) on which \(\mathrm {Frob}_q\) acts unipotently with one Jordan block.

Corollary 6.2

Let X be a stack. The indecomposable \(\iota \)-pure perverse Weil \(\overline{\mathbb {Q}_\ell }\)-sheaves on X are of the form \(\mathcal {P}\otimes \pi _X^*\mathcal {E}_n\) with \(\mathcal {P}\) simple, where \(\pi _X:X\rightarrow \mathrm {Spec}(\mathbb {F}_q)\). Moreover, for every simple perverse Weil \(\overline{\mathbb {Q}_\ell }\)-sheaf \(\mathcal {P}\), there exists a unique \(m\ge 1\) such that \(\mathcal {P}\simeq p_* \mathcal {Q}\), where \(p:X\otimes _{\mathbb {F}_q} \mathbb {F}_{q^m}\rightarrow X\) is the projection, \(\mathcal {Q}\) is geometrically simple (i.e. the pullback of \(\mathcal {Q}\) to \(X\otimes _{\mathbb {F}_{q^m}}\overline{\mathbb {F}_q}\) is simple) and not isomorphic to any of its conjugates under \(\mathrm {Gal}(\mathbb {F}_{q^m}/\mathbb {F}_q)\).

The first assertion of the corollary still holds with \(\overline{\mathbb {Q}_\ell }\) replaced by a finite (or algebraic) extension of \(\mathbb {Q}_\ell \).

The key to the proof of Theorem 6.1 is a weight estimate.

Proposition 6.3

Let X be a stack and let \(\pi :X\rightarrow \mathrm {Spec}(\mathbb {F}_q)\) be the projection. Let \(K\in D^{\ge 0}(X,\overline{\mathbb {Q}_\ell })\) be a complex of \(\iota \)-weights \(\ge w\) and vanishing i-th cohomology for \(i<0\). Then for all \(i\ge 0\), \(R^i \pi _* K\) has \(\iota \)-weights \(\ge w+\lceil \frac{i}{2}\rceil \). Moreover \(H^i(X\otimes _{\mathbb {F}_q} \overline{\mathbb {F}_q},K)^{\mathrm {Gal}(\overline{\mathbb {F}_q}/\mathbb {F}_q)}=0\) for \(i>0\) if \(w\ge 0\), and \(R\Gamma (X,K)=0\) if \(w>0\).

The estimate is optimal. Indeed, for \(X=BA\), where A is an Abelian variety, and a of weight 1, \(R^i\pi _*(\overline{\mathbb {Q}_\ell }\oplus \overline{\mathbb {Q}_\ell }^{(a)}[-1])\) is pure of weight \(\lceil \frac{i}{2}\rceil \). Unlike the case of schemes or stacks with affine stabilizers, \(R^i\pi _* K\) is not of \(\iota \)-weights \(\ge w+i\) in general.

Proof

The second assertion follows from the first one and the short exact sequence

$$\begin{aligned} 0\rightarrow H^{i-1}(X\otimes _{\mathbb {F}_q} \overline{\mathbb {F}_q},K)_{\mathrm {Gal}(\overline{\mathbb {F}_q}/\mathbb {F}_q)} \rightarrow H^i(X,K)\rightarrow H^{i}(X\otimes _{\mathbb {F}_q} \overline{\mathbb {F}_q},K)^{\mathrm {Gal}(\overline{\mathbb {F}_q}/\mathbb {F}_q)}\rightarrow 0. \end{aligned}$$

Note that for any stratification of X into locally closed substacks \((j_\alpha :X_\alpha \rightarrow X)_\alpha \) such that the closure of every stratum is a union of strata, K is a successive extension of \(Rj_{\alpha *}Rj_\alpha ^! K\), with \(Rj_\alpha ^! K\in D^{\ge 0}\) of \(\iota \)-weights \(\ge w\). Thus we may assume that X is smooth of dimension d and K has lisse cohomology sheaves. We may further assume \(K=\mathcal {F}[-n]\), with \(\mathcal {F}\) lisse of \(\iota \)-weights \(\ge w+n\) and \(n\ge 0\). Then the \(\iota \)-weights of are at most

$$\begin{aligned} d+\frac{2d+n-i}{2}-(w+n)-2d=-w-\frac{i+n}{2}\le -w-\frac{i}{2} \end{aligned}$$

by [31, Theorem 1.4]. We conclude by the fact that the \(\iota \)-weights are in \(w+\mathbb {Z}\).

Corollary 6.4

Let X be a stack and let \(\mathcal {P}\) and \(\mathcal {Q}\) be perverse \(\overline{\mathbb {Q}_\ell }\)-sheaves on X, with \(\mathcal {P}\) of \(\iota \)-weights \(\le w\), and \(\mathcal {Q}\) of \(\iota \)-weights \(\ge w\). Then for \(i>0\), \(\mathrm {Hom}^i(\mathcal {P}_{\overline{\mathbb {F}_q}},\mathcal {Q}_{\overline{\mathbb {F}_q}})^{\mathrm {Gal}(\overline{\mathbb {F}_q}/\mathbb {F}_q)}=0\), so that the canonical map \(\mathrm {Hom}^i(\mathcal {P},\mathcal {Q})\rightarrow \mathrm {Hom}^i(\mathcal {P}_{\overline{\mathbb {F}_q}},\mathcal {Q}_{\overline{\mathbb {F}_q}})\) is zero. Moreover, if \(\mathcal {Q}\) has \(\iota \)-weights \(>w\), then \(R\mathrm {Hom}(\mathcal {P},\mathcal {Q})=0\).

For perverse Weil \(\overline{\mathbb {Q}_\ell }\)-sheaves and \(i=1\), the first assertion holds with \(\mathrm {Hom}^1\) replaced by \(\mathrm {Ext}^1\) and \(\mathrm {Gal}(\overline{\mathbb {F}_q}/\mathbb {F}_q)\) replaced by \(W(\overline{\mathbb {F}_q}/\mathbb {F}_q)\).

Proof

We apply the proposition to \(K=R\mathcal {H} om (\mathcal {P},\mathcal {Q}) \in D^{\ge 0}(X,\overline{\mathbb {Q}_\ell })\), which has \(\iota \)-weights \(\ge 0\). If \(\mathcal {Q}\) has \(\iota \)-weights \(>w\), then K has \(\iota \)-weights \(>0\). \(\square \)

The proof of Theorem 6.1 is then identical to the proof of [3, Théorème 5.3.8], with [3, Proposition 5.1.15] replaced by Corollary 6.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W. Companions on Artin stacks. Math. Z. 292, 57–81 (2019). https://doi.org/10.1007/s00209-018-2129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2129-7

Mathematics Subject Classification

Navigation