Log in

Equivariant quantum cohomology of the odd symplectic Grassmannian

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The odd symplectic Grassmannian \(\mathrm {IG}:=\mathrm {IG}(k, 2n+1)\) parametrizes k dimensional subspaces of \({\mathbb {C}}^{2n+1}\) which are isotropic with respect to a general (necessarily degenerate) symplectic form. The odd symplectic group acts on \(\mathrm {IG}\) with two orbits, and \(\mathrm {IG}\) is itself a smooth Schubert variety in the submaximal isotropic Grassmannian \(\mathrm {IG}(k, 2n+2)\). We use the technique of curve neighborhoods to prove a Chevalley formula in the equivariant quantum cohomology of \(\mathrm {IG}\), i.e. a formula to multiply a Schubert class by the Schubert divisor class. This generalizes a formula of Pech in the case \(k=2\), and it gives an algorithm to calculate any multiplication in the equivariant quantum cohomology ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This can be explained by using that the localized equivariant cohomology is generated by divisors; see [4, Sect. 5].

  2. However, Gelfand and Zelevinsky [14] defined another group \(\widetilde{{{\mathrm{Sp}}}}_{2n+1}\) closely related to \({{\mathrm{Sp}}}_{2n+1}\) such that \({{\mathrm{Sp}}}_{2n} \subset \widetilde{{{\mathrm{Sp}}}}_{2n+1} \subset {{\mathrm{Sp}}}_{2n+2}\).

  3. Another way to see that \(F_c \subsetneq \overline{F^\circ }\) is to notice that every line in \(F^\circ \) has isotropic span, therefore any line in the closure must satisfy the same property. But we have seen that there exist lines in \(X_c\) with non isotropic span.

  4. One word of caution: the Bruhat order does not translate into partition inclusion. For example, \((2n+2-k, 0, \ldots , 0) \leqslant (1, 1, \ldots 1) \) in the Bruhat order for \(k < n+1\).

  5. But the Schubert divisor generates the ring \(\mathrm {QH}^*_T(\mathrm {IG})\)localized at the equivariant parameters. We refer to [4, Sect. 5] for details.

  6. The proof of [32, Lemma 7.1] is given in the Appendix of [32]. We comment that the full details proving the non-emptiness statement from loc.cit. can be found in [2, Theorem 2.5.5].

References

  1. Anderson, D.: Introduction to equivariant cohomology in algebraic geometry. Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, pp. 71–92 (2012)

  2. Björner, A., Brenti, F.: Combinatorics of Coxeter groups. Graduate texts in mathematics, vol 231. Springer, New York, p. xiv+363 (2005)

  3. Brion, M.: Lectures on the geometry of flag varieties. In: Topics in cohomological studies of algebraic varieties. Birkhäuser, Basel, Trends Math, pp. 33–85 (2005)

  4. Buch, A., Chaput, P.E., Mihalcea, L.C., Perrin, N.: A Chevalley formula for the equivariant quantum \(K\)-theory of cominuscule varieties, to appear in Algebraic Geometry. http://arxiv.org/pdf/1604.07500.pdf

  5. Buch, A., Chaput, P.E., Mihalcea, L.C., Perrin, N.: Finiteness of cominuscule quantum K-theory. Annales Sci. de L’École Normale Supérieure, no. 46 (2013)

  6. Buch, A.S.: Quantum cohomology of Grassmannians. Compos. Math. 137(2), 227–235 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kresch, A., Tamvakis, H.: Quantum Pieri rules for isotropic Grassmannians. Invent. Math. 178(2), 345–405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buch, A., Kresch, A., Tamvakis, H.: Quantum Giambelli formulas for isotropic Grassmannians. Math. Ann. 354(3), 801–812 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buch, A.S., Mihalcea, L.C.: Curve neighborhoods of Schubert varieties. J. Diff. Geom. 99(2), 255–283 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheong, D., Li, C.: On the conjecture O of GGI for G/P. Adv. Math. 306, 704–721 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chevalley, C.: Sur les décompositions cellulaires des espaces \(G/B\), Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, With a foreword by Armand Borel, pp. 1–23 (1994)

  12. Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology, Algebraic geometry–Santa Cruz: Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc. Providence, RI 1997, pp. 45–96 (1995)

  13. Galkin, S., Golyshev, V., Iritani, H.: Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures. Duke Math. J. 165(11), 2005–2077 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gel’fand, I.M., Zelevinskiĭ, A.V.: Models of representations of classical groups and their hidden symmetries. Funktsional. Anal. i Prilozhen. 18(3), 14–31 (1984)

    MathSciNet  MATH  Google Scholar 

  15. Graber, T.: Enumerative geometry of hyperelliptic plane curves. J. Algebraic Geom. 10(4), 725–755 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Graham, W.: Positivity in equivariant Schubert calculus. Duke Math. J. 109(3), 599–614 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics., 52nd edn. Springer, New York-Heidelberg (1977)

    Book  Google Scholar 

  18. Humphreys, J.E.: Linear algebraic groups. Springer, New York-Heidelberg. Graduate Texts in Mathematics, No. 21 (1975)

  19. Ikeda, T., Mihalcea, L.C., Naruse, H.: Factorial \(P\)- and \(Q\)-Schur functions represent equivariant quantum Schubert classes. Osaka J. Math. 53(3), 591–619 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Kim, B., Pandharipande, R.: The connectedness of the moduli space of maps to homogeneous spaces. In: Symplectic geometry and mirror symmetry (Seoul: 2000), World Sci. Publ. River Edge, NJ 2001, pp. 187–201 (2000)

  21. Knutson, A., Tao, T.: Puzzles and (equivariant) cohomology of Grassmannians. Duke Math. J. 119(2), 221–260 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kostant, B., Kumar, S.: \(T\)-equivariant \(K\)-theory of generalized flag varieties. Proc. Nat. Acad. Sci. USA 84(13), 4351–4354 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kresch, A., Tamvakis, H.: Quantum cohomology of the Lagrangian Grassmannian. J. Algebraic Geom. 12(4), 777–810 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kumar, S.: Kac-Moody groups, their flag varieties and representation theory. Progress in Mathematics, vol. 204. Birkhäuser Boston Inc, Boston, MA (2002)

  25. Li, C., Mihalcea, L.C., Shifler, R.: Conjecture O holds for the odd-symplectic Grassmannian. ar**v:1706.00744

  26. Mare, A., Mihalcea, L.: An affine deformation of the quantum cohomology ring of flag manifolds and periodic Toda lattice, to appear in Proc. of London Math. Soc. http://arxiv.org/pdf/1409.3587.pdf

  27. Matsumura, H.: Commutative ring theory: Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1986). (Translated from the Japanese by M. Reid)

    Google Scholar 

  28. Mihai, I.A.: Odd symplectic flag manifolds. Transform. Groups 12(3), 573–599 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mihai, I.: Variétés de drapeaux symplectiques impaires. Ph.D. thesis, Institut Fourier (2005)

  30. Mihalcea, L.C.: Equivariant quantum Schubert calculus. Adv. Math. 203(1), 1–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mihalcea, L.C.: Positivity in equivariant quantum Schubert calculus. Am. J. Math. 128(3), 787–803 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mihalcea, L.C.: On equivariant quantum cohomology of homogeneous spaces: Chevalley formulae and algorithms. Duke Math. J. 140(2), 321–350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mihalcea, L.C.: Giambelli formulae for the equivariant quantum cohomology of the Grassmannian. Trans. Am. Math. Soc. 360(5), 2285–2301 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Molev, A.I., Sagan, B.E.: A Littlewood-Richardson rule for factorial Schur functions. Trans. Am. Math. Soc. 351(11), 4429–4443 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Okounkov, A., Olshanskiĭ, G.: Shifted Schur functions. Algebra i Analiz 9(2), 73–146 (1997)

    MathSciNet  Google Scholar 

  36. Okounkov, A.: Quantum immanants and higher Capelli identities. Transform. Groups 1(1–2), 99–126 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pech, C.: Cohomologie quantique des grassmanniennes symplectiques impaire. Ph.D. thesis, Université de Grenoble (2011)

  38. Pech, C.: Quantum cohomology of the odd symplectic Grassmannian of lines. J. Algebra 375, 188–215 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Robert, A.: Proctor, odd symplectic groups. Invent. Math. 92(2), 307–332 (1988)

    Article  MathSciNet  Google Scholar 

  40. Tamvakis, H.: Schubert polynomials and degeneracy locus formulas. https://arxiv.org/pdf/1602.05919.pdf

  41. Tamvakis, H., Wilson, E.: Double theta polynomials and equivariant Giambelli formulas. Math. Proc. Cambridge Philos. Soc. 160(2), 353–377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thomsen, J.F.: Irreducibility of \(\overline{M}_{0, n}(G/P,\beta )\). Int. J. Math. 9(3), 367–376 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Dan Orr and Mark Shimozono for discussions and valuable suggestions and to Pierre-Emmanuel Chaput, Changzheng Li, and Nicolas Perrin for discussions and collaborations on related projects. Special thanks are due to Anders Buch for encouragement and interest in this project. We thank the referee for carefully reading our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan M. Shifler.

Additional information

L.M. was supported in part by NSA Young Investigator Award 98320-16-1-0013 and a Simons Collaboration grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihalcea, L.C., Shifler, R.M. Equivariant quantum cohomology of the odd symplectic Grassmannian. Math. Z. 291, 1569–1603 (2019). https://doi.org/10.1007/s00209-018-2120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2120-3

Mathematics Subject Classification

Navigation