Log in

Positivity of holomorphic vector bundles in terms of \(L^p\)-estimates for \(\bar{\partial }\)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new notion of the Hermitian holomorphic vector bundles satisfying the optimal \(L^2\)-estimate, and give a characterization of Nakano positivity for Hermitian holomorphic vector bundles via the notion. As an application, we provide a new method to obtain Nakano positivity of direct image sheaves of twisted relative canonical bundles associated to holomorphic families of complex manifolds. We also present a comprehensive picture about converses of \(L^p\)-estimates and \(L^p\)-extension for \(\bar{\partial }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berndtsson, B.: Subharmonicity conditions of the Bergman kernel and some other functions associated to pseudoconvex domains. Ann. Inst. Fourier (Grenoble) 56(6), 1633–1662 (2006)

    Article  MATH  Google Scholar 

  2. Berndtsson, B.: Curvature of vector bundles associated to holomorphic fibrations. Ann. Math. (2) 169(2), 531–560 (2009)

    Article  MATH  Google Scholar 

  3. Berndtsson, B., Păun, M.: Bergman kernels and the pseudoeffectivity of relative canonical bundles. Duke Math. J. 145(2), 341–378 (2008)

    Article  MATH  Google Scholar 

  4. Berndtsson, B.: Complex Brunn–Minkowski theory and positivity of vector bundles. ar**v:1807.05844

  5. Berndtsson, B., Păun, M.: Bergman kernels and subadjunction, e-preprint. ar**v:1002.4145

  6. Błocki, Z.: Suita conjecture and the Ohsawa–Takegoshi extension theorem. Invent. Math. 193(1), 149–158 (2013)

    Article  MATH  Google Scholar 

  7. Cao, J.: Ohsawa–Takegoshi extension theorem for compact Kähler manifolds and applications. In: Complex and Symplectic Geometry, Springer INdAM Ser., vol. 21, pp. 19–38. Springer, Cham (2017)

  8. Demailly, J.-P.: Complex analytic and differential geometry. http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

  9. Demailly, J.-P.: Estimations \(L^{2}\) pour l’opérateur \(\bar{\partial } \) d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète. Ann. Sci. École Norm. Sup. (4) 15(3), 457–511 (1982)

    Article  MATH  Google Scholar 

  10. Demailly, J.-P.: Analytic methods in algebraic geometry, Surveys of Modern Mathematics, vol. 1. International Press, Somerville; Higher Education Press, Bei**g (2012)

  11. Demailly, J.-P.: On the Ohsawa–Takegoshi–Manivel \(L^2\) extension theorem. In: Complex Analysis and Geometry (Paris, 1997), Progr. Math., vol. 188, pp. 47–82. Birkhäuser, Basel (2000)

  12. Deng, F., Ning, J., Wang, Z.: Characterizations of plurisubharmonic functions. Sci. China Math. 64(9), 1959–1970 (2021)

  13. Deng, F., Wang, Z., Zhang, L., Zhou, X.: New characterization of plurisubharmonic functions and positivity of direct image sheaves. ar**v:1809.10371

  14. Deng, F., Wang, Z., Zhang, L., Zhou, X.: Linear invariants of complex manifolds and their plurisubharmonic variations. J. Funct. Anal. 279(1), 108514 (2020)

    Article  MATH  Google Scholar 

  15. Guan, Q., Zhou, X.: Optimal constant problem in the \(L^2\) extension theorem. C. R. Math. Acad. Sci. Paris 350(15–16), 753–756 (2012)

    Article  MATH  Google Scholar 

  16. Guan, Q.A., Zhou, X.Y.: Optimal constant in an \(L^2\) extension problem and a proof of a conjecture of Ohsawa. Sci. China Math. 58(1), 35–59 (2015)

    Article  MATH  Google Scholar 

  17. Guan, Q., Zhou, X.: A solution of an \(L^2\) extension problem with an optimal estimate and applications. Ann. Math. (2) 181(3), 1139–1208 (2015)

    Article  MATH  Google Scholar 

  18. Guan, Q.A., Zhou, X.Y.: A proof of Demailly’s strong openness conjecture. Ann. Math. (2) 182(2), 605–616 (2015)

    Article  MATH  Google Scholar 

  19. Guan, Q.A., Zhou, X.Y.: Strong openness of multiplier ideal sheaves and optimal \(L^2\) extension. Sci. China Math. 60(6), 967–976 (2017)

    Article  MATH  Google Scholar 

  20. Hacon, C., Popa, M., Schnell, C.: Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Păun. In: Local and Global Methods in Algebraic Geometry, Contemp. Math., vol. 712, pp. 143–195. Amer. Math. Soc., Providence (2018)

  21. Hörmander, L.: \(L^{2}\) estimates and existence theorems for the \(\bar{\partial }\) operator. Acta Math. 113, 89–152 (1965)

    Article  MATH  Google Scholar 

  22. Hosono, G., Inayama, T.: A converse of Hörmander’s \(L^2\)-estimate and new positivity notions for vector bundles. Sci. China Math. 64(8), 1745–1756 (2021)

  23. Huybrechts, D.: Complex geometry. Universitext. Springer, Berlin (2005)

  24. Lempert, L., Szőke, R.: Direct images, fields of Hilbert spaces, and geometric quantization. Commun. Math. Phys. 327(1), 49–99 (2014)

    Article  MATH  Google Scholar 

  25. Liu, K., Yang, X.: Curvatures of direct image sheaves of vector bundles and applications. J. Differ. Geom. 98(1), 117–145 (2014)

    MATH  Google Scholar 

  26. Mourougane, C., Takayama, S.: Hodge metrics and the curvature of higher direct images. Ann. Sci. Éc. Norm. Supér. (4) 41(6), 905–924 (2008)

    Article  MATH  Google Scholar 

  27. Manivel, L.: Un théorème de prolongement \(L^2\) de sections holomorphes d’un fibré hermitien. Math. Z. 212(1), 107–122 (1993)

    Article  MATH  Google Scholar 

  28. Ohsawa, T.: On the extension of \(L^{2}\) holomorphic functions V: effects of generalization. Nagoya Math. J. 161, 1–21 (2001)

    Article  MATH  Google Scholar 

  29. Ohsawa, T.: \(L^2\) approaches in several complex variables, development of Oka–Cartan theory by \(L^2\) estimates for the \(\bar{\partial }\) operator, Springer Monographs in Mathematics. Springer, Tokyo (2015)

  30. Ohsawa, T., Takegoshi, K.: On the extension of \(L^2\) holomorphic functions. Math. Z. 195(2), 197–204 (1987)

    Article  MATH  Google Scholar 

  31. Păun, M., Takayama, S.: Positivity of twisted relative pluricanonical bundles and their direct images. J. Algebr. Geom. 27(2), 211–272 (2018)

    Article  MATH  Google Scholar 

  32. Raufi, H.: Log concavity for matrix-valued functions and a matrix-valued Prékopa Theorem. ar**v:1311.7343

  33. Zhou, X., Zhu, L.: An optimal \(L^2\) extension theorem on weakly pseudoconvex Kähler manifolds. J. Differ. Geom. 110(1), 135–186 (2018)

    MATH  Google Scholar 

  34. Zhou, X., Zhu, L.: Siu’s lemma, optimal \(L^2\) extension and applications to twisted pluricanonical sheaves. Math. Ann. 377(1–2), 675–722 (2020)

    Article  MATH  Google Scholar 

  35. Zhou, X., Zhu, L.: Optimal \(L^2\) extension of sections from subvarieties in weakly pseudoconvex manifolds. Pac. J. Math. 309(2), 475–510 (2020). ar**v:1909.08820v1

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author is partially supported by the NSFC grant (No. 11871451) and by the Fundamental Research Funds for the Central Universities. The second author is partially supported by the National Key R&D Program of China (No. 2021YFA1002600) and by the NSFC (No. 12071485). The third author is partially supported by the National Key R&D Program of China (No.2021YFA1002600), by the Bei**g Natural Science Foundation (No. 1202012, Z190003), and by the NSFC grants (No. 12071035). The fourth author is partially supported by the NSFC grant (No. 11688101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiafu Ning or Zhiwei Wang.

Additional information

Communicated by Ngaiming Mok.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We prove a result used in the proof of Theorem 1.6, which seems to be already known.

Lemma 4.7

Let \(U\subset {\mathbb {C}}^n\) be a domain, \(\omega _1\), \(\omega _2\) be any two Hermitian forms on U, and \(E=U\times {\mathbb {C}}^r\) be trivial vector bundle on U with a Hermitian metric. Let \(\Theta \in C^0(X,\Lambda ^{1,1}T^*_X\otimes End(E))\) such that \(\Theta ^*=-\Theta \). Then

$$\begin{aligned} Im[i\Theta ,\Lambda _{\omega _1}]=Im [i\Theta ,\Lambda _{\omega _2}], \end{aligned}$$

and for any E-valued (n, 1) form \(u\in Im[i\Theta ,\Lambda _{\omega _1}]\),

$$\begin{aligned} \langle [i\Theta ,\Lambda _{\omega _1}]^{-1}u,u\rangle _{\omega _1}dV_{\omega _1} =\langle [i\Theta ,\Lambda _{\omega _2}]^{-1}u,u\rangle _{\omega _2}d V_{\omega _2}. \end{aligned}$$

Proof

For any \(z_0\in U\), after a linearly transformation, we may assume \(\omega _1=i\sum _{j=1}^{n}dz_j\wedge d\bar{z}_j\) and \(\omega _2=i\sum _{j=1}^{n}\lambda _j^2 dz_j\wedge d\bar{z}_j\) at \(z_0\) with \(\lambda _j>0\). Let \(w_j=\lambda _j z_j\) for \(j=1,2,\ldots ,n\), then \(\omega _2=i\sum _{j=1}^{n}dw_j\wedge d\bar{w}_j\). We may write

$$\begin{aligned} i\Theta =i\sum _{jk\alpha \beta }c_{jk\alpha \beta }dz_j\wedge d\bar{z}_k \otimes e^*_\alpha \otimes e_\beta =i\sum _{jk\alpha \beta } c'_{jk\alpha \beta }dw_j\wedge d\bar{w}_k\otimes e^*_\alpha \otimes e_\beta \end{aligned}$$
(15)

with \(c'_{jk\alpha \beta }=\frac{c_{jk\alpha \beta }}{\lambda _j\lambda _k}\).

Denote \(\lambda =\prod _{j=1}^{n}\lambda _j\). Let \(u=\sum _{j,\alpha }u_{j\alpha }dz\wedge d\bar{z}_j\otimes e_\alpha \), then \(u=\sum _{j,\alpha }u'_{j\alpha }dw\wedge d\bar{w}_j\otimes e_\alpha \) with \(u'_{j\alpha }=\frac{u_{j\alpha }}{\lambda \lambda _j}\). Note that

$$\begin{aligned} {[}i\Theta ,\Lambda _{\omega _1}]u=\sum _{jk\alpha \beta } u_{j\alpha }c_{jk\alpha \beta }dz\wedge d\bar{z}_k\otimes e_{\beta }, \end{aligned}$$
(16)

and

$$\begin{aligned} {[}i\Theta ,\Lambda _{\omega _2}]u=\sum _{jk\alpha \beta } u'_{j\alpha }c'_{jk\alpha \beta }dw\wedge d\bar{w}_k\otimes e_{\beta }. \end{aligned}$$
(17)

So it is easy to see \(Im[i\Theta ,\Lambda _{\omega _1}] =Im[i\Theta ,\Lambda _{\omega _2}]\). We write

$$\begin{aligned}&{[}i\Theta ,\Lambda _{\omega _1}]^{-1}u=\sum _{jk\alpha \beta } u_{j\alpha }d_{jk\alpha \beta }dz\wedge d\bar{z}_k\otimes e_{\beta },\\&{[}i\Theta ,\Lambda _{\omega _2}]^{-1}u=\sum _{jk\alpha \beta } u'_{j\alpha }d'_{jk\alpha \beta }dw\wedge d\bar{w}_k\otimes e_{\beta }, \end{aligned}$$

Then from Eqs. (15),(16), (17), we can get

$$\begin{aligned} d'_{jk\alpha \beta }=\lambda _j\lambda _k d_{jk\alpha \beta }. \end{aligned}$$

We now assume that \(\{e_\alpha \}\) are orthonormal at \(z_0\). Then

$$\begin{aligned}&\langle [i\Theta ,\Lambda _{\omega _1}]^{-1}u,u\rangle _{\omega _1}d V_{\omega _1}=\sum _{jk\alpha \beta }d_{jk\alpha \beta }u_{j\alpha } \bar{u}_{k\beta }c_ndz\wedge d\bar{z},\\&\langle [i\Theta ,\Lambda _{\omega _2}]^{-1}u,u\rangle _{\omega _2}d V_{\omega _2}= \sum _{jk\alpha \beta }d'_{jk\alpha \beta }u'_{j\alpha } \bar{u'}_{k\beta }c_ndw\wedge d\bar{w}. \end{aligned}$$

Note also that

$$\begin{aligned} c_ndw\wedge d\bar{w}=\lambda ^2c_ndz\wedge d\bar{z}, \end{aligned}$$

We get

$$\begin{aligned} \langle [i\Theta ,\Lambda _{\omega _1}]^{-1}u,u\rangle _{\omega _1}d V_{\omega _1} =\langle [i\Theta ,\Lambda _{\omega _2}]^{-1}u, u\rangle _{\omega _2}dV_{\omega _2}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, F., Ning, J., Wang, Z. et al. Positivity of holomorphic vector bundles in terms of \(L^p\)-estimates for \(\bar{\partial }\). Math. Ann. 385, 575–607 (2023). https://doi.org/10.1007/s00208-021-02348-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02348-7

Mathematics Subject Classification

Navigation