Log in

The Inviscid Limit of Navier–Stokes Equations for Analytic Data on the Half-Space

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In their classical work, Sammartino and Caflisch (Commun Math Phys 192(2):433–461, 1998a; Commun Math Phys 192(2):463–491, 1998b) proved the inviscid limit of the incompressible Navier–Stokes equations for well-prepared data with analytic regularity in the half-space. Their proof is based on the detailed construction of Prandtl’s boundary layer asymptotic expansions. In this paper, we give a direct proof of the inviscid limit for general analytic data without having to construct Prandtl’s boundary layer correctors. Our analysis makes use of the boundary vorticity formulation and the abstract Cauchy–Kovalevskaya theorem on analytic boundary layer function spaces that capture unbounded vorticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre R., Wang Y.-G., Xu C.-J., Yang T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. 28(3), 745–784 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson C.R.: Vorticity boundary conditions and boundary vorticity generation for two-dimensional viscous incompressible flows. J. Comput. Phys. 80(1), 72–97 (1989)

    Article  ADS  MATH  Google Scholar 

  3. Bardos C.W., Titi E.S.: Mathematics and turbulence: where do we stand?. J Turbul. 14(3), 42–76 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. Caflisch R.E.: A simplified version of the abstract Cauchy–Kowalewski theorem with weak singularities. Bull. Am. Math. Soc. (N.S.) 23(2), 495–500 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantin P., Elgindi T., Ignatova M., Vicol V.: Remarks on the inviscid limit for the Navier-Stokes equations for uniformly bounded velocity fields. SIAM J. Math. Anal. 49(3), 1932–1946 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin P., Kukavica I., Vicol V.: On the inviscid limit of the Navier–Stokes equations. Proc. Am. Math. Soc. 143(7), 3075–3090 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin P., Vicol V.: Remarks on high reynolds numbers hydrodynamics and the inviscid limit. J. Nonlinear Sci. 28(2), 711–724 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Gérard-Varet D., Dormy E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gerard-Varet, D., Lacave, C., Nguyen, T.T., Rousset, F.: The vanishing viscosity limit for 2d navier–stokes in a rough domain. J. Math. Pures Appl. (2017) (to appear)

  10. Gerard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2d Navier–Stokes. (2016). ar**v:1607.06434

  11. Gerard-Varet D., Masmoudi N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér. (4) 48(6), 1273–1325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gérard-Varet D., Nguyen T.T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77(1–2), 71–88 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Gie, G.-M., Kelliher, J., Lopes Filho, M.C., Mazzucato, A., Nussenzveig Lopes, H.J.: The vanishing viscosity limit for some symmetric flows. ar**v preprint, 2017

  14. Grenier E.: On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl. Math. 53(9), 1067–1091 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grenier, E., Nguyen, T.T.: Green function for linearized Navier–Stokes around a boundary layer profile: near critical layers (2017). ar**v:1705.05323

  16. Grenier, E., Nguyen, T.T.: On nonlinear instability of Prandtl’s boundary layers: the case of Rayleigh’s stable shear flows (2017). ar**v:1706.01282

  17. Grenier, E., Nguyen, T.T.: Sharp bounds on linear semigroup of Navier–Stokes with boundary layer norms (2017). ar**v:1703.00881

  18. Grenier, E., Nguyen, T.T.: The stability of Prandtl’s boundary layers (2017) (in preparation)

  19. Grenier, E., Nguyen, T.T.: Sublayer of prandtl boundary layers. Arch. Ration. Mech. Anal. (2018) (to appear)

  20. Guo Y., Nguyen T.T.: A note on Prandtl boundary layers. Comm. Pure Appl. Math. 64(10), 1416–1438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Iftimie D., Sueur F.: Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions. Arch. Ration. Mech. Anal. 199(1), 145–175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ignatova M., Vicol V.: Almost global existence for the Prandtl boundary layer equations. Arch. Ration. Mech. Anal. 220(2), 809–848 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In: Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif., 1983), volume 2 of Math. Sci. Res. Inst. Publ., pp. 85–98. Springer, New York, 1984

  24. Kelliher J.P.: On Kato’s conditions for vanishing viscosity. Indiana Univ. Math. J. 56(4), 1711–1721 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Maekawa Y.: Solution formula for the vorticity equations in the half plane with application to high vorticity creation at zero viscosity limit. Adv. Differ. Equ. 18(1–2), 101–146 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Maekawa Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Comm. Pure Appl. Math. 67(7), 1045–1128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maekawa, Y., Mazzucato, A.: The inviscid limit and boundary layers for navier–stokes flows. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 1–48 (Eds. A. Novotny and Y. Giga). Springer, 2017

  28. Masmoudi N., Rousset F.: Uniform regularity for the Navier-Stokes equation with Navier boundary condition. Arch. Ration. Mech. Anal. 203(2), 529–575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Masmoudi N., Masmoudi N.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68(10), 1683–1741 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mazzucato A., Taylor M.: Vanishing viscosity plane parallel channel flow and related singular perturbation problems. Anal. PDE, 1(1), 35–93 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Olenik O.A.: On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl. Math. Mech. 30, 951–974 (1967) 1966

    Article  MathSciNet  Google Scholar 

  32. Olenik O.A., Samokhin V.N.: Mathematical models in boundary layer theory, volume 15 of Applied Mathematics and Mathematical Computation. Chapman & Hall/CRC, Boca Raton (1999)

    Google Scholar 

  33. Prandtl, L.: Uber flüssigkeits-bewegung bei sehr kleiner reibung pp. 484–491 (1904)

  34. Safonov M.V.: The abstract Cauchy-Kovalevskaya theorem in a weighted Banach space. Commun. Pure Appl. Math. 48(6), 629–637 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sammartino M., Caflisch R.E.: Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Sammartino M., Caflisch R.E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192(2), 463–491 (1998b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Wang C., Wang Y., Zhang Z.: Zero-viscosity limit of the Navier-Stokes equations in the analytic setting. Arch. Ration. Mech. Anal. 224(2), 555–595 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toan T. Nguyen.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Nguyen, T.T. The Inviscid Limit of Navier–Stokes Equations for Analytic Data on the Half-Space. Arch Rational Mech Anal 230, 1103–1129 (2018). https://doi.org/10.1007/s00205-018-1266-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1266-9

Navigation