Log in

Decay Results of the Nonstationary Navier–Stokes Flows in Half-Spaces

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

There is a long standing problem on the nonstationary Navier–Stokes equations which pertains to how to characterize the L1−time asymptotic expansion of the Navier–Stokes flows in the half space. Beyond a few partial results, new progress has not yet to be made on this open question. In this article, we give a confirmed answer to this problem; namely, a thorough characterization on L1−summability is revealed. In order to prove this result, we need to avoid the unboundedness of the projection operator, which is overcome by treating an elliptic Neumann problem. Finally, using the weighted estimates on the heat kernel’s convolution, we obtain the exact profile structure of the asymptotic expansion in \({L^1(\mathbb{R}^n_+)}\). In addition, some crucial estimates on the fractional spatial derivatives of the non-stationary Stokes and Navier–Stokes flows are established for the first time, which allows for a better understanding of the L1−decay problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bae, H.: Temporal decays in \(L^1\) and \(L^\infty \) for the Stokes flow. J. Differ. Equ. 222, 1–20 (2006)

    Article  ADS  MATH  Google Scholar 

  2. Bae, H.: Temporal and spatial decays for the Stokes flow. J. Math. Fluid Mech. 10, 503–530 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bae, H., **, B.: Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations. J. Differ. Equ. 209, 365–391 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bae, H., **, B.: Temporal and spatial decays for the Navier-Stokes equations. Proc. Roy. Soc. Edinburgh Sect. A 135, 461–477 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bae, H., **, B.: Existence of strong mild solution of the Navier-Stokes equations in the half space with nondecaying initial data. J. Korean Math. Soc. 49, 113–138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandolese, L.: Space-time decay of Navier-Stokes flows invariant under rotations. Math. Ann. 329, 685–706 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brandolese, L., Vigneron, F.: New asymptotic profiles of nonstationary solutions of the Navier-Stokes system. J. Math. Pures Appl. 88, 64–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borchers, W., Miyakawa, T.: \(L^2\) decay for the Navier-Stokes flow in half spaces. Math. Ann. 282, 139–155 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fujigaki, Y., Miyakawa, T.: Asymptotic profiles of non stationary incompressible Navier-Stokes flows in the half-space. Methods Appl. Anal. 8, 121–158 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Han, P.: Weighted decay properties for the incompressible Stokes flow and Navier-Stokes equations in a half space. J. Differ. Equ. 253, 1744–1778 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Han, P.: Weighted spatial decay rates for the Navier-Stokes flows in a half space. Proc. Roy. Soc. Edinburgh Sect. A 144, 491–510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, P.: Long-time behavior for the nonstationary Navier-Stokes flows in \(L^1(\mathbb{R}^n_+)\). J. Funct. Anal. 266, 1511–1546 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, P.: Large time behavior for the nonstationary Navier-Stokes flows in the half-space. Adv. Math. 288, 1–58 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  16. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Integrals and derivatives of fractional order and some their applications. Nauka i Tekhnika, Minsk (1987) (in Russian)

  17. Schonbek, M.E.: \(L^2\) decay for weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 88, 209–222 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Schonbek, M.E.: Lower bounds of rates of decay for solutions to the Navier-Stokes equations. J. Am. Math. Soc. 4, 423–449 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schonbek, M.E.: Asymptotic behavior of solutions to the three-dimensional Navier-Stokes equations. Indiana Univ. Math. J. 41, 809–823 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schonbek, M.E.: Large time behaviour of solutions to the Navier-Stokes equations in \(H^m\) spaces. Commun. Partial Differ. Equ. 20, 103–117 (1995)

    Article  MATH  Google Scholar 

  21. Schonbek, M.E.: Decay of parabolic conservation laws. Commun. Partial Differ. Equ. 7, 449–473 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schonbek, M.E.: The Fourier Splitting Method. In: Advances in geometric analysis and continuum mechanics. International Press, Cambridge (1995)

  23. Schonbek, M.E., Wiegner, M.: On the decay of higher-order norms of the solutions of Navier-Stokes equations. Proc. Roy. Soc. Edinburgh Sect. A 126, 677–685 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Solonnikov, V.A.: On nonstationary Stokes problem and Navier-Stokes problem in a half-space with initial data nondecreasing at infinity. J. Math. Sci. 114, 1726–1740 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stein, E.M.: Harmonic Analysis. Princeton University Press, Princeton (1993)

    Google Scholar 

  26. Ukai, S.: A solution formula for the Stokes equation in \(\mathbb{R}^{N}\). Commun. Pure Appl. Math. XL, 611–621 (1987)

  27. Wu, J.: Dissipative quasi-geostrophic equations with \(L^p\) data. Electron. J. Diff. Eq. 56, pp. 13 (2001) (electronic)

  28. Wu, J.: The 2D dissipative quasi-geostrophic equation. Appl. Math. Lett. 15, 925–930 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, J.: The quasi-geostrophic equation and its two regularizations. Comm. Partial Differ. Equ. 27, 1161–1181 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, J.: Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces. SIAM J. Math. Anal. 36, 1014–1030 (2004/2005)

  31. Wu, J.: The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation. Nonlinearity 18, 139–154 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Wu, J.: Solutions of the 2D quasi-geostrophic equation in \(\text{H}\ddot{o}\text{lder}\) spaces. Nonlinear Anal. 62, 579–594 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pigong Han.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, P. Decay Results of the Nonstationary Navier–Stokes Flows in Half-Spaces. Arch Rational Mech Anal 230, 977–1015 (2018). https://doi.org/10.1007/s00205-018-1263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1263-z

Navigation