Log in

On Inviscid Limits for the Stochastic Navier–Stokes Equations and Related Models

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study inviscid limits of invariant measures for the 2D stochastic Navier–Stokes equations. As shown by Kuksin (J Stat Phys 115(1–2):469–492, 2004), the noise scaling \({\sqrt{\nu}}\) is the only one which leads to non-trivial limiting measures, which are invariant for the 2D Euler equations. Using a Moser-type iteration for stochastic drift-diffusion equations, we show that any limiting measure \({\mu_{0}}\) is in fact supported on bounded vorticities. Relationships of \({\mu_{0}}\) to the long term dynamics of 2D Euler in \({L^{\infty}}\) with the weak* topology are discussed. We also obtain a drift-independent modulus of continuity for a stationary deterministic model problem, which leads us to conjecture that in fact \({\mu_0}\) is supported on \({C^0}\) . Moreover, in view of the Batchelor–Krainchnan 2D turbulence theory, we consider inviscid limits for a weakly damped stochastic Navier–Stokes equation. In this setting we show that only an order zero noise scaling (with respect to ν) leads to a nontrivial limiting measure in the inviscid limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor, G.K.: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12(Suppl. II), 233–239 (1969)

  2. Bedrossian, J., Masmoudi, N.: Inviscid dam** and the asymptotic stability of planar shear flows in the 2D Euler equations. ar**v:1306.5028 (2013)

  3. Bensoussan A.: Stochastic Navier–Stokes equations. Acta Appl. Math. 38(3), 267–304 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bensoussan A., Frehse J.: Local solutions for stochastic Navier Stokes equations. M2AN Math. Model. Numer. Anal. 34(2), 241–273 (2000)

    MathSciNet  Google Scholar 

  5. Bensoussan A., Temam R.: Équations aux dérivées partielles stochastiques non linéaires. I. Israel J. Math. 11, 95–129 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bessaih, H.: Stationary solutions for the 2D stochastic dissipative Euler equation. Seminar on Stochastic Analysis, Random Fields and Applications V, Progr. Probab., Vol. 59. Birkhäuser, Basel, 23–36, 2008

  7. Bessaih, H., Ferrario, B.: Inviscid limit of stochastic damped 2D Navier–Stokes equations. ar**v:1212.0509 (2012)

  8. Bouchet F., Simonnet E.: Random changes of flow topology in two-dimensional and geophysical turbulence. Phys. Rev. Lett. 102(9), 94504 (2009)

    Article  ADS  Google Scholar 

  9. Breckner H.: Galerkin approximation and the strong solution of the Navier–Stokes equation. J. Appl. Math. Stoch. Anal. 13(3), 239–259 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bricmont, J., Kupiainen, A., Lefevere, R.: Ergodicity of the 2D Navier–Stokes equations with random forcing. Commun. Math. Phys. 224(1), 65–81 (2001) (dedicated to Joel L. Lebowitz)

  11. Brzeźniak, Z., Peszat, S.: Strong local and global solutions for stochastic Navier–Stokes equations. Infinite dimensional stochastic analysis (Amsterdam, 1999), Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., Vol. 52. R. Neth. Acad. Arts Sci., Amsterdam, 85–98, 2000

  12. Constantin, P., Glatt-Holtz, N., Vicol, V.: Unique ergodicity for fractionally dissipated, stochastically forced 2d euler equations. Commun. Math. Phys. 330(2), 819–857 (2014)

  13. Constantin P., Ramos F.: Inviscid limit for damped and driven incompressible Navier–Stokes equations in \({{\mathbb{R}^2}}\) . Commun. Math. Phys. 275(2), 529–551 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Da Prato G., Debussche A.: Ergodicity for the 3D stochastic Navier–Stokes equations. J. Math. Pures Appl. (9) 82(8), 877–947 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Da Prato G., Zabczyk J.: Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, Vol. 44. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  16. Da Prato G., Zabczyk J.: Ergodicity for infinite-dimensional systems, London Mathematical Society Lecture Note Series,Vol. 229. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  17. Debussche, A.: Ergodicity results for the stochastic Navier–Stokes equations: an introduction. Topics in Mathematical Fluid Mechanics, Lecture Notes in Mathematics. Springer, Berlin, 23–108, 2013

  18. Debussche A., Glatt-Holtz N., Temam R.: Local martingale and pathwise solutions for an abstract fluids model. Phys. D 240(14–15), 1123–1144 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Denis L., Matoussi A., Stoica L.: L p estimates for the uniform norm of solutions of quasilinear SPDE’s. Probab. Theory Relat. Fields 133(4), 437–463 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Denis L., Matoussi A., Stoica L.: Maximum principle and comparison theorem for quasi-linear stochastic PDE’s. Electron. J. Probab. 14(19), 500–530 (2009)

    MATH  MathSciNet  Google Scholar 

  21. Khanin W.E.K., Mazel A., Sinai Y.: Invariant measures for Burgers equation with stochastic forcing. Ann. Math. (2) 151(3), 877–960 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Flandoli F., Gatarek D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102(3), 367–391 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Flandoli F., Maslowski B.: Ergodicity of the 2-D Navier–Stokes equation under random perturbations. Commun. Math. Phys. 172(1), 119–141 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Flandoli F., Romito M.: Markov selections for the 3D stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 140(3–4), 407–458 (2008)

    MATH  MathSciNet  Google Scholar 

  25. Foias C., Jolly M.S., Manley O.P., Rosa R.: Statistical estimates for the Navier–Stokes equations and the Kraichnan theory of 2-D fully developed turbulence. J. Stat. Phys. 108(3–4), 591–645 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Foldes, J., Šverák, V.: In preparation

  27. Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 260, 3rd edn. Springer, Heidelberg, (2012)

  28. Frisch, U.: Turbulence. Cambridge University Press, Cambridge, 1995 (the legacy of A. N. Kolmogorov)

  29. Glatt-Holtz N., Ziane M.: Strong pathwise solutions of the stochastic Navier–Stokes system. Adv. Differ. Equ. 14(5–6), 567–600 (2009)

    MATH  MathSciNet  Google Scholar 

  30. Hairer M., Mattingly J.C.: Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. Math. (2) 164(3), 993–1032 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hairer M., Mattingly J.C.: A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Electron. J. Probab. 16(23), 658–738 (2011)

    MATH  MathSciNet  Google Scholar 

  32. Judovic V.I.: Non-stationary flows of an ideal incompressible fluid. Z̆. Vyčisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)

    MathSciNet  Google Scholar 

  33. Karatzas, I., Shreve, S. E.: Brownian motion and stochastic calculus, Graduate Texts in Mathematics, Vol. 113, 2nd edn. Springer, New York, 1991

  34. Kraichnan R.H.: Inertial ranges in two-domensional turbulence. Phys. Fluids, 10(7), 1417–1423 (1967)

    Article  ADS  Google Scholar 

  35. Kraichnan R.H., Montgomery D.: Two-dimensional turbulence. Rep. Prog. Phys. 43, 574–619 (1980)

    Article  MathSciNet  Google Scholar 

  36. Kryloff N., Bogoliouboff N.: La théorie générale de la mesure dans son application à l’étude des systèmes dynamiques de la mécanique non linéaire. Ann. Math. (2) 38(1), 65–113 (1937)

    Article  MathSciNet  Google Scholar 

  37. Krylov, N.V.: Itô’s formula for the L p -norm of stochastic \({{W^1_{p}}}\) -valued processes. Probab. Theory Relat. Fields 147(3–4), 583–605 (2010)

  38. Kukavica I.: On the dissipative scale for the Navier–Stokes equation. Indiana Univ. Math. J. 48(3), 1057–1081 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kuksin S., Penrose O.: A family of balance relations for the two-dimensional Navier–Stokes equations with random forcing. J. Stat. Phys. 118(3–4), 437–449 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Kuksin S., Shirikyan A.: A coupling approach to randomly forced nonlinear PDE’s. I. Commun. Math. Phys. 221(2), 351–366 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Kuksin S., Shirikyan A.: Coupling approach to white-forced nonlinear PDEs. J. Math. Pures Appl. (9) 81(6), 567–602 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kuksin S., Shirikyan A.: Mathematics of Two-Dimensional Turbulence, Cambridge Tracts in Mathematics, Vol. 194. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  43. Kuksin S.: The Eulerian limit for 2D statistical hydrodynamics. J. Stat. Phys. 115(1–2), 469–492 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Kuksin S.: Remarks on the balance relations for the two-dimensional Navier–Stokes equation with random forcing. J. Stat. Phys. 122(1), 101–114 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Kuksin, S.: Randomly forced nonlinear PDEs and statistical hydrodynamics in 2 space dimensions. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2006

  46. Kuksin, S.: Eulerian limit for 2D Navier–Stokes equation and damped/driven KdV equation as its model. Tr. Mat. Inst. Steklova 259(Anal. i Osob. Ch. 2), 134–142 (2007)

  47. Kuksin S.: On distribution of energy and vorticity for solutions of 2D Navier–Stokes equation with small viscosity. Commun. Math. Phys. 284(2), 407–424 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. Kupiainen, A.: Ergodicity of two dimensional turbulence. ar**v:1005.0587v1 [math-ph] (2010)

  49. Majda A.J., Bertozzi A.L.: Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, Vol. 27. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  50. Marchioro C.: An example of absence of turbulence for any Reynolds number. II. Commun. Math. Phys. 108(4), 647–651 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. Masmoudi N., Young L.-S.: Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs. Commun. Math. Phys. 227(3), 461–481 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. Mattingly J.C.: Ergodicity of 2D Navier–Stokes equations with random forcing and large viscosity. Commun. Math. Phys. 206(2), 273–288 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. Mattingly J.C.: Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics. Commun. Math. Phys. 230(3), 421–462 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  54. Mattingly, J.C.: On recent progress for the stochastic Navier Stokes equations. Journées “Équations aux Dérivées Partielles”, pages Exp. No. XI, 52. Univ. Nantes, Nantes, (2003)

  55. Mattingly J.C., Pardoux É.: Malliavin calculus for the stochastic 2D Navier–Stokes equation. Commun. Pure Appl. Math. 59(12), 1742–1790 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  56. Mikulevicius R., Rozovskii B.L.: Stochastic Navier–Stokes equations for turbulent flows. SIAM J. Math. Anal. 35(5), 1250–1310 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  57. Mikulevicius R., Rozovskii B.L.: Global L 2-solutions of stochastic Navier–Stokes equations. Ann. Probab. 33(1), 137–176 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  58. Miller J.: Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 65(17), 2137–2140 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. Miller J., Weichman P.B., Cross M.C.: Statistical mechanics, euler’s equation, and jupiter’s red spot. Phys. Rev. A 45(4), 2328–2359 (1992)

    Article  ADS  Google Scholar 

  60. Moser J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)

    Article  MATH  Google Scholar 

  61. Mouhot C., Villani C.: On Landau dam**. Acta Math. 207(1), 29–201 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  62. Novikov E.A.: Functionals and the random-force method in turbulence theory. Soviet Phys. JETP 20, 1290–1294 (1965)

    Google Scholar 

  63. Revuz, D., Yor, M.: Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 293, 3rd edn. Springer, Berlin, (1999)

  64. Robert R.: A maximum-entropy principle for two-dimensional perfect fluid dynamics. J. Stat. Phys. 65(3–4), 531–553 (1991)

    Article  MATH  ADS  Google Scholar 

  65. Seregin, G., Silvestre, L., Šverák, V., Zlatoš, A.: On divergence-free drifts. J. Differ. Equ. 252(1), 505–540 (2012)

  66. Shirikyan A.: Local times for solutions of the complex Ginzburg–Landau equation and the inviscid limit. J. Math. Anal. Appl. 384(1), 130–137 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  67. Shnirelman A.I.: Lattice theory and flows of ideal incompressible fluid. Russian J. Math. Phys. 1(1), 105–114 (1993)

    MATH  MathSciNet  Google Scholar 

  68. Silvestre L., Vicol V., Zlatoš A.: On the loss of continuity for super-critical drift-diffusion equations. Arch. Ration. Mech. Anal. 207(3), 845–877 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  69. Šverák, V.: Course notes. http://math.umn.edu/~sverak/course-notes2011, 2011/2012

  70. Tabeling P.: Two-dimensional turbulence: a physicist approach. Phys. Rep. 362(1), 1–62 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  71. Tsinober, A.: An Informal Introduction to Turbulence, Vol. 63. Springer, Berlin, 2001

  72. Turkington B.: Statistical equilibrium measures and coherent states in two-dimensional turbulence. Commun. Pure Appl. Math. 52(7), 781–809 (1999)

    Article  MathSciNet  Google Scholar 

  73. Viot, M.: Solutions faibles d’équations aux dérivées partielles non linéaires. Thèse, Université Pierre et Marie Curie, Paris, (1976)

  74. Vishik, M.I., Komech, A.I., Fursikov, A.V.: Some mathematical problems of statistical hydromechanics. Uspekhi Mat. Nauk, 34(5(209)), 135–210, 256 (1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlad Vicol.

Additional information

Communicated by L. Saint-Raymond

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glatt-Holtz, N., Šverák, V. & Vicol, V. On Inviscid Limits for the Stochastic Navier–Stokes Equations and Related Models. Arch Rational Mech Anal 217, 619–649 (2015). https://doi.org/10.1007/s00205-015-0841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0841-6

Keywords

Navigation