Log in

Mitoxantrone impairs proteasome activity and prompts early energetic and proteomic changes in HL-1 cardiomyocytes at clinically relevant concentrations

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Mitoxantrone (MTX) is used to treat several types of cancers and to improve neurological disability in multiple sclerosis. Unfortunately, cardiotoxicity is a severe and common adverse effect in MTX-treated patients. Herein, we aimed to study early and late mechanisms of MTX-induced cardiotoxicity using murine HL-1 cardiomyocytes. Cells were exposed to MTX (0.1, 1 or 10 µM) during short (2, 4, 6, or 12 h) or longer incubation periods (24 or 48 h). At earlier time points, (6 and 12 h) cytotoxicity was already observed for 1 and 10 µM MTX. Proteomic analysis of total protein extracts found 14 proteins with higher expression and 26 with lower expression in the cells exposed for 12 h to MTX (pH gradients 4–7 and 6–11). Of note, the expression of the regulatory protein 14-3-3 protein epsilon was increased by a factor of two and three, after exposure to 1 and 10 µM MTX, respectively. At earlier time-points, 10 µM MTX increased intracellular ATP levels, while decreasing media lactate levels. At later stages (24 and 48 h), MTX-induced cytotoxicity was concentration and time-dependent, according to the MTT reduction and lactate dehydrogenase leakage assays, while caspase-9, -8 and -3 activities increased at 24 h. Regarding cellular redox status, total glutathione increased in 1 µM MTX (24 h), and that increase was dependent on gamma-glutamylcysteine synthetase activity. Meanwhile, for both 1 and 10 µM MTX, oxidized glutathione was significantly higher than control at 48 h. Moreover, MTX was able to significantly decrease proteasomal chymotrypsin-like activity in a concentration and time-independent manner. In summary, MTX significantly altered proteomic, energetic and oxidative stress homeostasis in cardiomyocytes at clinically relevant concentrations and our data clearly demonstrate that MTX causes early cardiotoxicity that needs further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ac-DEVD-pNA:

Acetyl-Asp-Glu-Val-Asp p-nitroanilide;

AUF:

Arbitrary units of fluorescence;

FBS:

Fetal bovine serum;

GSH:

Reduced glutathione;

GSSG:

Oxidized glutathione;

HF:

Heart failure;

LDH:

Lactate dehydrogenase;

LVEF:

Left ventricular ejection fraction;

MTT:

3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide;

MS:

Multiple sclerosis;

NAC:

N-acetyl-cysteine;

OD:

Optic density

PBS:

Phosphate buffered saline with calcium and magnesium;

ROS:

Reactive oxygen species;

tGSH:

Total glutathione

References

  • Aghazadeh Y, Papadopoulos V (2016) The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discov Today 21(2):278–287

    CAS  PubMed  Google Scholar 

  • Bernitsas E, Wei W, Mikol DD (2006) Suppression of mitoxantrone cardiotoxicity in multiple sclerosis patients by dexrazoxane. Ann Neurol 59(1):206–209

    CAS  PubMed  Google Scholar 

  • Boland MP, Fitzgerald KA, O'Neill LAJ (2000) Topoisomerase II Is required for mitoxantrone to signal nuclear factor κB activation in HL60 Cells. J Biol Chem 275(33):25231–25238

    CAS  PubMed  Google Scholar 

  • Brown DA, Perry JB, Allen ME et al (2017) Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 14(4):238–250

    CAS  PubMed  Google Scholar 

  • Canal P, Attal M, Chatelut E et al (1993) Plasma and cellular pharmacokinetics of mitoxantrone in high-dose chemotherapeutic regimen for refractory lymphomas. Cancer Res 53(20):4850–4854

    CAS  PubMed  Google Scholar 

  • Capela JP, Ruscher K, Lautenschlager M et al (2006) Ecstasy-induced cell death in cortical neuronal cultures is serotonin 2A-receptor-dependent and potentiated under hyperthermia. Neuroscience 139(3):1069–1081

    CAS  PubMed  Google Scholar 

  • Chan FK-M, Moriwaki K, De Rosa MJ (2013) Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol Biol 979:65–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chartier N, Epstein J, Soudant M et al (2018) Clinical follow-up of 411 patients with relapsing and progressive multiple sclerosis 10 years after discontinuing mitoxantrone treatment: a real-life cohort study. Eur J Neurol 25(12):1439–1445

    CAS  PubMed  Google Scholar 

  • Chen Y, Jungsuwadee P, Vore M, Butterfield DA (2007) Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interv 7(3):147–156

    CAS  PubMed  Google Scholar 

  • Claycomb WC, Lanson NAJ, Stallworth BS et al (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95(6):2979–2984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman RE, Maisey MN, Knight RK, Rubens RD (1984) Mitoxantrone in advanced breast cancer–a phase II study with special attention to cardiotoxicity. Eur J Cancer Clin Oncol 20(6):771–776

    CAS  PubMed  Google Scholar 

  • Corna G, Santambrogio P, Minotti G, Cairo G (2004) Doxorubicin paradoxically protects cardiomyocytes against iron-mediated toxicity: role of reactive oxygen species and ferritin. J Biol Chem 279(14):13738–13745

    CAS  PubMed  Google Scholar 

  • Costa VM, Ferreira LM, Branco PS et al (2009a) Cross-functioning between the extraneuronal monoamine transporter and multidrug resistance protein 1 in the uptake of adrenaline and export of 5-(glutathion-S-yl)adrenaline in rat cardiomyocytes. Chem Res Toxicol 22(1):129–135

    CAS  PubMed  Google Scholar 

  • Costa VM, Silva R, Ferreira R et al (2009b) Adrenaline in pro-oxidant conditions elicits intracellular survival pathways in isolated rat cardiomyocytes. Toxicology 257:70–79

    CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329(1–2):23–38

    CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10(2):389–406

    CAS  PubMed  Google Scholar 

  • Damiani RM, Moura DJ, Viau CM, Caceres RA, Henriques JA, Saffi J (2016) Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol 90(9):2063–2076

    CAS  PubMed  Google Scholar 

  • Dores-Sousa JL, Duarte JA, Seabra V, Bastos ML, Carvalho F, Costa VM (2015) The age factor for mitoxantrone’s cardiotoxicity: multiple doses render the adult mouse heart more susceptible to injury. Toxicology 329:106–119

    CAS  PubMed  Google Scholar 

  • Dreger H, Westphal K, Weller A et al (2009) Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection. Cardiovasc Res 83(2):354–361

    CAS  PubMed  Google Scholar 

  • Du Z-X, Zhang H-Y, Meng X, Guan Y, Wang H-Q (2009) Role of oxidative stress and intracellular glutathione in the sensitivity to apoptosis induced by proteasome inhibitor in thyroid cancer cells. BMC Cancer 9(1):56

    PubMed  PubMed Central  Google Scholar 

  • Duthie SJ, Grant MH (1989) The role of reductive and oxidative metabolism in the toxicity of mitoxantrone, adriamycin and menadione in human liver derived Hep G2 hepatoma cells. Br J Cancer 60(4):566–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehninger G, Proksch B, Heinzel G, Schiller E, Weible KH, Woodward DL (1985) The pharmacokinetics and metabolism of mitoxantrone in man. Invest New Drugs 3(2):109–116

    CAS  PubMed  Google Scholar 

  • Eimre M, Paju K, Pelloux S et al (2008) Distinct organization of energy metabolism in HL-1 cardiac cell line and cardiomyocytes. Biochim Biophys Acta 1777(6):514–524

    CAS  PubMed  Google Scholar 

  • EMA (2016) Novantrone and associated names. In: Agency EM (ed). https://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Novantrone_30/WC500209683.pdf. Accessed Nov 2019

  • Feigin VL (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol 18(5):459–480

    Google Scholar 

  • Ferlay J, Colombet M, Soerjomataram I et al (2018) Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 103:356–387

    CAS  PubMed  Google Scholar 

  • Ferreira JP, Verdonschot J, Collier T et al (2019) Proteomic bioprofiles and mechanistic pathways of progression to heart failure. Circ Heart Fail 12(5):e005897

    CAS  PubMed  Google Scholar 

  • Finck BN, Kelly DP (2007) Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 115(19):2540–2548

    PubMed  Google Scholar 

  • Fisher GR, Patterson LH (1992) Lack of involvement of reactive oxygen in the cytotoxicity of mitoxantrone, CI941 and ametantrone in MCF-7 cells: comparison with doxorubicin. Cancer Chemother Pharmacol 30(6):451–458

    CAS  PubMed  Google Scholar 

  • Fitzmaurice C et al (2019) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017. JAMA Oncol 5(12):1749–1768

    PubMed  PubMed Central  Google Scholar 

  • Ghezzi A (2018) European and american guidelines for multiple sclerosis treatment. Neurol Ther 7(2):189–194

    PubMed  PubMed Central  Google Scholar 

  • González-Juanatey JR, Iglesias MJ, Alcaide C, Piñeiro R, Lago F (2003) Doxazosin induces apoptosis in cardiomyocytes cultured in vitro by a mechanism that is independent of Α1-adrenergic blockade. Circulation 107(1):127–131

    PubMed  Google Scholar 

  • Goodin DS, Arnason BG, Coyle PK, Frohman EM, Paty DW (2003) The use of mitoxantrone (Novantrone) for the treatment of multiple sclerosis: report of the therapeutics and technology assessment subcommittee of the american academy of neurology. Neurology 61(10):1332–1338

    CAS  PubMed  Google Scholar 

  • Gratia S, Kay L, Michelland S, Seve M, Schlattner U, Tokarska-Schlattner M (2012) Cardiac phosphoproteome reveals cell signaling events involved in doxorubicin cardiotoxicity. J Proteomics 75(15):4705–4716

    CAS  PubMed  Google Scholar 

  • Hammond CL, Lee TK, Ballatori N (2001) Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes. J Hepatol 34(6):946–954

    CAS  PubMed  Google Scholar 

  • Hasinoff BB, Patel D, Wu X (2020) The role of topoisomerase IIbeta in the mechanisms of action of the doxorubicin cardioprotective agent dexrazoxane. Cardiovasc Toxicol 20(3):312–320

    CAS  PubMed  Google Scholar 

  • Hu OY, Chang SP, Law CK, Jian JM, Chen KY (1992) Pharmacokinetic and pharmacodynamic studies with mitoxantrone in the treatment of patients with nasopharyngeal carcinoma. Cancer 69(4):847–853

    CAS  PubMed  Google Scholar 

  • Israr MZ, Heaney LM, Suzuki T (2018) Proteomic Biomarkers of Heart Failure. Heart Fail Clin 14(1):93–107

    PubMed  Google Scholar 

  • Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR (2006) Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Cold Spring Harbor Protocols 3:4493

    Google Scholar 

  • Kluza J, Marchetti P, Gallego MA et al (2004) Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene 23(42):7018–7030

    CAS  PubMed  Google Scholar 

  • Koceva-Chyła A, Jedrzejczak M, Skierski J, Kania K, Jóźwiak Z (2005) Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: relation to drug cytotoxicity and caspase-3 activation. Apoptosis 10(6):1497–1514

    PubMed  Google Scholar 

  • Kuznetsov AV, Javadov S, Sickinger S, Frotschnig S (2015) Grimm M. H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochim Biophys Acta 2:276–284

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Lyu YL, Kerrigan JE, Lin CP et al (2007) Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67(18):8839–8846

    CAS  PubMed  Google Scholar 

  • Marriott JJ, Miyasaki JM, Gronseth G, O'Connor PW (2010) Evidence Report: the efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: report of the therapeutics and technology assessment subcommittee of the american academy of neurology. Neurology 74(18):1463–1470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mladenka P, Applova L, Patocka J et al (2018) Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev 38(4):1332–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul F, Dörr J, Würfel J, Vogel HP, Zipp F (2009) Early mitoxantrone-induced cardiotoxicity in secondary progressive multiple sclerosis. BMJ Case Rep. https://doi.org/10.1136/bcr.06.2009.2004

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23(3):630–639

    CAS  PubMed  Google Scholar 

  • Reinheckel T, Ullrich O, Sitte N, Grune T (2000) Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress. Arch Biochem Biophys 377(1):65–68

    CAS  PubMed  Google Scholar 

  • Reis-Mendes A, GA S, Carvalho RA et al (2017) Naphthoquinoxaline metabolite of mitoxantrone is less cardiotoxic than the parent compound and it can be a more cardiosafe drug in anticancer therapy. Arch Toxicol 91(4):1871–1890

    CAS  PubMed  Google Scholar 

  • Rodrigues D, Neves R, Carvalho A, Lourdes Bastos M, Costa V, Carvalho F (2020) In vitro mechanistic studies on α-amanitin and its putative antidotes. Arch Toxicol 94(6):2061–2078

    CAS  PubMed  Google Scholar 

  • Roger VL (2013) Epidemiology of heart failure. Circ Res 113(6):646–659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossato LG, Costa VM, Pinto PG et al (2013a) The metabolic profile of mitoxantrone and its relation with mitoxantrone-induced cardiotoxicity. Arch Toxicol 87:1809–1820

    CAS  PubMed  Google Scholar 

  • Rossato LG, Costa VM, Vilas-Boas V et al (2013b) Therapeutic concentrations of mitoxantrone elicit energetic imbalance in H9c2 cells: mitochondrionopathy as a key factor in the cytotoxicity. Cardiovasc Toxicol 13(4):413–425

    CAS  PubMed  Google Scholar 

  • Rossato LG, Costa VM, Dallegrave E et al (2014) Mitochondrial cumulative damage induced by mitoxantrone: late onset cardiac energetic impairment. Cardiovasc Toxicol 14(1):30–40

    CAS  PubMed  Google Scholar 

  • Schell FC, Yap HY, Blumenschein G, Valdivieso M, Bodey G (1982) Potential cardiotoxicity with mitoxantrone. Cancer Treat Rep 66(8):1641–1643

    CAS  PubMed  Google Scholar 

  • Seiter K (2005) Toxicity of the topoisomerase II inhibitors. Expert Opin Drug Saf 4(2):219–234

    CAS  PubMed  Google Scholar 

  • Shaikh AY, Suryadevara S, Tripathi A et al (2016) Mitoxantrone-induced cardiotoxicity in acute myeloid leukemia-a velocity vector imaging analysis. Echocardiography (Mount Kisco, NY) 33(8):1166–1177

    Google Scholar 

  • Shan M, Dai D, Vudem A, Varner JD, Stroock AD (2018) Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors. PLoS Comput Biol 14(12):e1006584

    PubMed  PubMed Central  Google Scholar 

  • Shenkenberg TD, Von Hoff DD (1986) Mitoxantrone: a new anticancer drug with significant clinical activity. Ann Intern Med 105(1):67–81

    CAS  PubMed  Google Scholar 

  • Shipp NG, Dorr RT, Alberts DS, Dawson BV, Hendrix M (1993) Characterization of experimental mitoxantrone cardiotoxicity and its partial inhibition by ICRF-187 in cultured neonatal rat heart cells. Cancer Res 53(3):550–556

    CAS  PubMed  Google Scholar 

  • Soares AS, Costa VM, Diniz C, Fresco P (2013) Potentiation of cytotoxicity of paclitaxel in combination with Cl-IB-MECA in human C32 metastatic melanoma cells: A new possible therapeutic strategy for melanoma. Biomed Pharmacother 67(8):777–789

    CAS  PubMed  Google Scholar 

  • Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardio Res 33(2):243–257

    CAS  Google Scholar 

  • Stewart JA, McCormack JJ, Krakoff IH (1982) Clinical and clinical pharmacologic studies of mitoxantrone. Cancer Treat Rep 66(6):1327–1331

    CAS  PubMed  Google Scholar 

  • Stewart DJ, Green RM, Mikhael NZ, Montpetit V, Thibault M, Maroun JA (1986) Human autopsy tissue concentrations of mitoxantrone. Cancer Treat Rep 70(11):1255–1261

    CAS  PubMed  Google Scholar 

  • Strigun A, Wahrheit J, Niklas J, Heinzle E, Noor F (2012) Doxorubicin increases oxidative metabolism in HL-1 cardiomyocytes as shown by 13C metabolic flux analysis. Toxicol Sci 125(2):595–606

    CAS  PubMed  Google Scholar 

  • Tabata M, Tabata R, Grabowski DR, Bukowski RM, Ganapathi MK, Ganapathi R (2001) Roles of NF-κB and 26 S proteasome in apoptotic cell death induced by topoisomerase I and II poisons in human nonsmall cell lung carcinoma. J Biol Chem 276(11):8029–8036

    CAS  PubMed  Google Scholar 

  • Takemura G, Kanoh M, Minatoguchi S, Fujiwara H (2013) Cardiomyocyte apoptosis in the failing heart — a critical review from definition and classification of cell death. Int J Cardiol 167(6):2373–2386

    PubMed  Google Scholar 

  • Unverferth DV, Unverferth BJ, Balcerzak SP, Bashore TA, Neidhart JA (1983) Cardiac evaluation of mitoxantrone. Cancer Treat Rep 67(4):343–350

    CAS  PubMed  Google Scholar 

  • Vavrova A, Jansova H, Mackova E et al (2013) Catalytic inhibitors of topoisomerase II differently modulate the toxicity of anthracyclines in cardiac and cancer cells. PLoS ONE 8(10):e76676

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Herbay A, Dörken B, Mall G, Körbling M (1988) Cardiac damage in autologous bone marrow transplant patients: an autopsy study Cardiotoxic pretreatment as a major risk factor. Klin Wochenschr 66(23):1175–1181

    Google Scholar 

  • Wallin MT, Culpepper WJ, Nichols E et al (2019) Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(3):269–285

    Google Scholar 

  • Wang X, Robbins J (2006) Heart failure and protein quality control. Circ Res 99(12):1315–1328

    CAS  PubMed  Google Scholar 

  • Wojcik C (2002) Regulation of apoptosis by the ubiquitin and proteasome pathway. J Cell Mol Med 6(1):25–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wynert WR, Harvey HA, Lipton A, Schweitzer J, White DS (1982) Phase I study of a 5-day schedule of mitoxantrone (dihydroxyanthracenedione). Cancer Treat Rep 66(6):1303–1306

    CAS  PubMed  Google Scholar 

  • Young A, Oldford C, Mailloux RJ (2020) Lactate dehydrogenase supports lactate oxidation in mitochondria isolated from different mouse tissues. Redox Biol 28:101339

    CAS  PubMed  Google Scholar 

  • Zhang S, Liu X, Bawa-Khalfe T et al (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18(11):1639–1642

    PubMed  Google Scholar 

Download references

Acknowledgments

We want to acknowledge the late Professor William Claycomb, Professor of Biochemistry and Molecular Biology at LSUHSC, USA for the donation of the HL-1 cell line. VMC acknowledges Fundação da Ciência e Tecnologia (FCT) for her grant (SFRH/BPD/110001/2015) as this work was funded by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the Norma Transitória – DL57/2016/CP1334/CT0006. MS data was provided by the Mass Spectrometry Unit (UniMS), ITQB/iBET, Oeiras, Portugal. This work was supported by FEDER funds through the Operational Programme for Competitiveness Factors – COMPETE and by national funds by FCT within the project “PTDC/DTP-FTO/1489/2014 – POCI-01-0145-FEDER-016537”. This work received financial support from PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through UIDB/04378/2020 (UCIBIO-REQUIMTE Associate Laboratory).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vera Marisa Costa or Félix Carvalho.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, V.M., Capela, J.P., Sousa, J.R. et al. Mitoxantrone impairs proteasome activity and prompts early energetic and proteomic changes in HL-1 cardiomyocytes at clinically relevant concentrations. Arch Toxicol 94, 4067–4084 (2020). https://doi.org/10.1007/s00204-020-02874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-020-02874-4

Keywords

Navigation