Log in

Autophagy: a promising process for the treatment of acetaminophen-induced liver injury

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Toxicity from drugs has become an important cause of acute liver failure. Acetaminophen, a commonly used analgesic, can cause severe acute liver injury that can worsen into acute liver failure. Autophagy, a protective cell programme, has been reported to have protective effects in a variety of diseases such as cancer, immune diseases, neurodegenerative diseases, and inflammatory diseases. In this review, we describe how an excess of acetaminophen causes liver injury step by step, from the formation of the initial protein adduct to the final hepatocyte necrosis, as well as the induction of autophagy and its beneficial effects on diseases. Emphasis is placed on the potential effect of autophagy on improving the damage of acetaminophen to hepatocytes. Finally, we are committed to providing insights into the treatment of acute liver failure through the mechanism of acetaminophen induced liver injury, the mechanism of autophagy, and the link between autophagy and liver injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal R, Hennings L, Rafferty TM et al (2012) Acetaminophen-induced hepatotoxicity and protein nitration in neuronal nitric-oxide synthase knockout mice. J Pharmacol Exp Ther 340:134–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allaire M, Rautou PE, Codogno P et al (2019) Autophagy in liver diseases: time for translation? J Hepatol 70:985–998

    PubMed  Google Scholar 

  • Ambade A, Catalano D, Lim A et al (2012) Inhibition of heat shock protein (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice. Hepatology 55:1585–1595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Argo CK, Caldwell SH (2017) Editorial: severe acute liver injury: cause connects to outcome. Am J Gastroenterol 112:1397–1399

    PubMed  Google Scholar 

  • Axe EL, Walker SA, Manifava M et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bajt ML, Cover C, Lemasters JJ et al (2006) Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxicol Sci Off J Soc Toxicol 94:217–225

    CAS  Google Scholar 

  • Bajt ML, Farhood A, Lemasters JJ et al (2008) Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J Pharmacol Exp Ther 324:8–14

    CAS  PubMed  Google Scholar 

  • Bakula D, Müller AJ, Zuleger T et al (2017) WIPI3 and WIPI4 β-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat Commun 8:15637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Melnyk SB, Krager KJ et al (2015) The neuronal nitric oxide synthase inhibitor NANT blocks acetaminophen toxicity and protein nitration in freshly isolated hepatocytes. Free Radic Biol Med 89:750–757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbier-Torres L, Iruzubieta P, Fernández-Ramos D et al (2017) The mitochondrial negative regulator MCJ is a therapeutic target for acetaminophen-induced liver injury. Nat Commun 8:2068

    PubMed  PubMed Central  Google Scholar 

  • Bernal W, Auzinger G, Dhawan A et al (2010) Acute liver failure. Lancet 376:190–201

    PubMed  Google Scholar 

  • Chino H, Mizushima N (2020) ER-phagy: quality control and turnover of endoplasmic reticulum. Trends Cell Biol 30:384–398

    CAS  PubMed  Google Scholar 

  • Chowdhury S, Otomo C, Leitner A et al (2018) Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A–WIPI4 complex. Proc Natl Acad Sci USA 115:E9792–E9801

    CAS  PubMed  Google Scholar 

  • Dall'Armi C, Devereaux KA, Di Paolo G (2013) The role of lipids in the control of autophagy. Curr Biol CB 23:R33–45

    CAS  PubMed  Google Scholar 

  • Davern TJ, James LP, Hinson JA et al (2006) Measurement of serum acetaminophen-protein adducts in patients with acute liver failure. Gastroenterology 130:687–694

    CAS  PubMed  Google Scholar 

  • Degenhardt K, Mathew R, Beaudoin B et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dela Cruz CS, Kang MJ (2018) Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 41:37–44

    CAS  PubMed  Google Scholar 

  • Di A, **ong S, Ye Z et al (2018) The TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation. Immunity 49:56–65.e54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    CAS  PubMed  Google Scholar 

  • Dombi E, Mortiboys H, Poulton J (2018) Modulating mitophagy in mitochondrial disease. Curr Med Chem 25:5597–5612

    CAS  PubMed  Google Scholar 

  • Donde A, Sun M, Jong YH et al (2020) Upregulation of ATG7 attenuates motor neuron dysfunction associated with depletion of TARDBP/TDP-43. Autophagy 16:672–682

    CAS  PubMed  Google Scholar 

  • Dooley HC, Razi M, Polson HE et al (2014) WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 55:238–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du K, Ramachandran A, Jaeschke H (2016) Oxidative stress during acetaminophen hepatotoxicity: sources, pathophysiological role and therapeutic potential. Redox Biol 10:148–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley LJ, Cabodevilla AG, Makar AN et al (2019) Intrinsic lipid binding activity of ATG16L1 supports efficient membrane anchoring and autophagy. EMBO J. https://doi.org/10.15252/embj.2018100554

    Article  PubMed  PubMed Central  Google Scholar 

  • Egan D, Kim J, Shaw RJ et al (2011) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7:643–644

    PubMed  Google Scholar 

  • El-Benna J, Hurtado-Nedelec M, Marzaioli V et al (2016) Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev 273:180–193

    CAS  PubMed  Google Scholar 

  • Fernandez-Mosquera L, Yambire KF, Couto R et al (2019) Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis. Autophagy 15:1572–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganger DR, Rule J, Rakela J et al (2018) Acute liver failure of indeterminate etiology: a comprehensive systematic approach by an expert committee to establish causality. Am J Gastroenterol 113:1319

    CAS  PubMed  Google Scholar 

  • Gao Y, Chu S, Zhang Z et al (2017) Early stage functions of mitochondrial autophagy and oxidative stress in acetaminophen-induced liver injury. J Cell Biochem 118:3130–3141

    CAS  PubMed  Google Scholar 

  • Geisler S, Holmström KM, Skujat D et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    CAS  PubMed  Google Scholar 

  • Greene AW, Grenier K, Aguileta MA et al (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13:378–385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gunawan BK, Liu ZX, Han D et al (2006) c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology 131:165–178

    CAS  PubMed  Google Scholar 

  • Han J, Bae J, Choi CY et al (2016) Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy 12:2326–2343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Sun S, Sun Y et al (2019) Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy 15:1860–1881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna RA, Quinsay MN, Orogo AM et al (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287:19094–19104

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Li S, Tang D et al (2019) Circulating Peroxiredoxin-1 is a novel damage-associated molecular pattern and aggravates acute liver injury via promoting inflammation. Free Radic Biol Med 137:24–36

    CAS  PubMed  Google Scholar 

  • Heckmann BL, Teubner BJW, Tummers B et al (2019) LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer's disease. Cell 178:536–551.e514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill SM, Wrobel L, Rubinsztein DC (2019) Post-translational modifications of Beclin 1 provide multiple strategies for autophagy regulation. Cell Death Differ 26:617–629

    CAS  PubMed  Google Scholar 

  • Hu T, Sun H, Deng WY et al (2019) Augmenter of liver regeneration protects against acetaminophen-induced acute liver injury in mice by promoting autophagy. Shock 52:274–283

    CAS  PubMed  Google Scholar 

  • Ilyas G, Zhao E, Liu K et al (2016) Macrophage autophagy limits acute toxic liver injury in mice through down regulation of interleukin-1β. J Hepatol 64:118–127

    CAS  PubMed  Google Scholar 

  • Jaeschke H, Ramachandran A (2018) Oxidant stress and lipid peroxidation in acetaminophen hepatotoxicity. React Oxyg Species 5:145–158

    Google Scholar 

  • Jain A, Lamark T, Sjøttem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285:22576–22591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jan YH, Heck DE, Dragomir AC et al (2014) Acetaminophen reactive intermediates target hepatic thioredoxin reductase. Chem Res Toxicol 27:882–894

    CAS  PubMed  PubMed Central  Google Scholar 

  • ** SM, Lazarou M, Wang C et al (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191:933–942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SW, Haydar G, Taniane C et al (2016) AMPK activation prevents and reverses drug-induced mitochondrial and hepatocyte injury by promoting mitochondrial fusion and function. PLoS One 11:e0165638

    PubMed  PubMed Central  Google Scholar 

  • Kang KY, Shin JK, Lee SM (2019) Pterostilbene protects against acetaminophen-induced liver injury by restoring impaired autophagic flux. Food Chem Toxicol 123:536–545

    CAS  PubMed  Google Scholar 

  • Katsuragi Y, Ichimura Y, Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282:4672–4678

    CAS  PubMed  Google Scholar 

  • Kaufmann A, Beier V, Franquelim HG et al (2014) Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell 156:469–481

    CAS  PubMed  Google Scholar 

  • Kim EH, Park PH (2018) Globular adiponectin protects rat hepatocytes against acetaminophen-induced cell death via modulation of the inflammasome activation and ER stress: critical role of autophagy induction. Biochem Pharmacol 154:278–292

    PubMed  Google Scholar 

  • Kim J, Kundu M, Viollet B et al (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Kim G, Han DH et al (2017) Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition. Autophagy 13:1767–1781

    PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Schulman BA (2014) Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol 21:336–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotani T, Kirisako H, Koizumi M et al (2018) The Atg2–Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proc Natl Acad Sci USA 115:10363–10368

    CAS  PubMed  Google Scholar 

  • Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Leonzino M, Hancock-Cerutti W et al (2018) VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 217:3625–3639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kylarova S, Kosek D, Petrvalska O et al (2016) Cysteine residues mediate high-affinity binding of thioredoxin to ASK1. FEBS J 283:3821–3838

    CAS  PubMed  Google Scholar 

  • Lee WM (2017) Acetaminophen (APAP) hepatotoxicity-Isn’t it time for APAP to go away? J Hepatol 67:1324–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YK, Lee JA (2016) Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Rep 49:424–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GS, Subramanian N, Kim AI et al (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492:123–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Qi F, Meng X et al (2018a) Mst1 regulates colorectal cancer stress response via inhibiting Bnip3-related mitophagy by activation of JNK/p53 pathway. Cell Biol Toxicol 34:263–277

    CAS  PubMed  Google Scholar 

  • Li M, Li J, Zeng R et al (2018b) Respiratory syncytial virus replication is promoted by autophagy-mediated inhibition of apoptosis. J Virol. https://doi.org/10.1128/JVI.02193-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Wang H, Zhang J et al (2019a) SPHK1 deficiency protects mice from acetaminophen-induced ER stress and mitochondrial permeability transition. Cell Death Differ. https://doi.org/10.1038/s41418-019-0471-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Li Y, Siraj S et al (2019b) FUN14 domain-containing 1-mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice. Hepatology 69:604–621

    CAS  PubMed  Google Scholar 

  • Li Q, **ng S, Chen Y et al (2020) Reasonably activating Nrf2: a long-term, effective and controllable strategy for neurodegenerative diseases. Eur J Med Chem 185:111862

    CAS  PubMed  Google Scholar 

  • Lin Z, Wu F, Lin S et al (2014) Adiponectin protects against acetaminophen-induced mitochondrial dysfunction and acute liver injury by promoting autophagy in mice. J Hepatol 61:825–831

    CAS  PubMed  Google Scholar 

  • Liu L, Feng D, Chen G et al (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14:177–185

    PubMed  Google Scholar 

  • Liu P, Huang G, Wei T et al (2018) Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis 1864:764–777

    CAS  PubMed  Google Scholar 

  • Livingston MJ, Wang J, Zhou J et al (2019) Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy 15:2142–2162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Otín C, Kroemer G (2019) Decelerating ageing and biological clocks by autophagy. Nat Rev Mol Cell Biol 20:385–386

    PubMed  Google Scholar 

  • Losier TT, Russell RC (2019) Bacterial outer membrane vesicles trigger pre-activation of a xenophagic response via AMPK. Autophagy 15:1489–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv M, Wang C, Li F et al (2017) Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Protein Cell 8:25–38

    CAS  PubMed  Google Scholar 

  • Marques PE, Oliveira AG, Pereira RV et al (2015) Hepatic DNA deposition drives drug-induced liver injury and inflammation in mice. Hepatology 61:348–360

    CAS  PubMed  Google Scholar 

  • Marshall RS, Vierstra RD (2018) To save or degrade: balancing proteasome homeostasis to maximize cell survival. Autophagy 14:2029–2031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama T, Noda NN (2017) Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. J Antibiot. https://doi.org/10.1038/ja.2017.104

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuda N, Sato S, Shiba K et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGill MR, Jaeschke H (2013) Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res 30:2174–2187

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGill MR, Sharpe MR, Williams CD et al (2012) The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Investig 122:1574–1583

    CAS  PubMed  Google Scholar 

  • Michael SL, Pumford NR, Mayeux PR et al (1999) Pretreatment of mice with macrophage inactivators decreases acetaminophen hepatotoxicity and the formation of reactive oxygen and nitrogen species. Hepatology 30:186–195

    CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mo R, Lai R, Lu J et al (2018) Enhanced autophagy contributes to protective effects of IL-22 against acetaminophen-induced liver injury. Theranostics 8:4170–4180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moles A, Torres S, Baulies A et al (2018) Mitochondrial-lysosomal axis in acetaminophen hepatotoxicity. Front Pharmacol 9:453

    PubMed  PubMed Central  Google Scholar 

  • Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Ann Rev Pathol 8:105–137

    CAS  Google Scholar 

  • Nakahira K, Haspel JA, Rathinam VA et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12:222–230

    CAS  PubMed  Google Scholar 

  • Nakka VP, Prakash-Babu P, Vemuganti R (2016) Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: potential therapeutic targets for acute CNS injuries. Mol Neurobiol 53:532–544

    CAS  PubMed  Google Scholar 

  • Ni HM, Bockus A, Boggess N et al (2012a) Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology 55:222–232

    CAS  PubMed  Google Scholar 

  • Ni HM, Boggess N, McGill MR et al (2012b) Liver-specific loss of Atg5 causes persistent activation of Nrf2 and protects against acetaminophen-induced liver injury. Toxicol Sci Off J Soc Toxicol 127:438–450

    CAS  Google Scholar 

  • Ni HM, Jaeschke H, Ding WX (2012c) Targeting autophagy for drug-induced hepatotoxicity. Autophagy 8:709–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni HM, Woolbright BL, Williams J et al (2014) Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J Hepatol 61:617–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni HM, McGill MR, Chao X et al (2016) Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice. J Hepatol 65:354–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni HM, Chao XJ, Yang H et al (2019) Dual roles of mammalian target of rapamycin in regulating liver injury and tumorigenesis in autophagy-defective mouse liver. Hepatology 70:2142–2155

    CAS  PubMed  Google Scholar 

  • Nishimura T, Tamura N, Kono N et al (2017) Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains. EMBO J 36:1719–1735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oslowski CM, Hara T, O'Sullivan-Murphy B et al (2012) Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab 16:265–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JS, Davis RL, Sue CM (2018) Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep 18:21

    PubMed  PubMed Central  Google Scholar 

  • Park S, Aintablian A, Coupe B et al (2020) The endoplasmic reticulum stress-autophagy pathway controls hypothalamic development and energy balance regulation in leptin-deficient neonates. Nat Commun 11:1914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pohl C, Dikic I (2019) Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366:818–822

    CAS  PubMed  Google Scholar 

  • Ramachandran A, Lebofsky M, Yan HM et al (2015) Hepatitis C virus structural proteins can exacerbate or ameliorate acetaminophen-induced liver injury in mice. Arch Toxicol 89:773–783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rautou PE, Mansouri A, Lebrec D et al (2010) Autophagy in liver diseases. J Hepatol 53:1123–1134

    CAS  PubMed  Google Scholar 

  • Rushworth GF, Megson IL (2014) Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther 141:150–159

    CAS  PubMed  Google Scholar 

  • Russell RC, Tian Y, Yuan H et al (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15:741–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryter SW, Bhatia D, Choi ME (2019) Autophagy: a lysosome-dependent process with implications in cellular redox homeostasis and human disease. Antioxid Redox Signal 30:138–159

    CAS  PubMed  Google Scholar 

  • Saito C, Lemasters JJ, Jaeschke H (2010) c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 246:8–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh M, Nishitoh H, Fujii M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Martín P, Sou YS, Kageyama S et al (2020) NBR1-mediated p62-liquid droplets enhance the Keap1-Nrf2 system. EMBO Rep 21:e48902

    PubMed  Google Scholar 

  • Scheiermann P, Bachmann M, Goren I et al (2013) Application of interleukin-22 mediates protection in experimental acetaminophen-induced acute liver injury. Am J Pathol 182:1107–1113

    CAS  PubMed  Google Scholar 

  • Schmidt LE, Dalhoff K, Poulsen HE (2002) Acute versus chronic alcohol consumption in acetaminophen-induced hepatotoxicity. Hepatology 35:876–882

    PubMed  Google Scholar 

  • Shan S, Shen Z, Song F (2018) Autophagy and acetaminophen-induced hepatotoxicity. Arch Toxicol 92:2153–2161

    CAS  PubMed  Google Scholar 

  • Shan S, Shen Z, Zhang C et al (2019) Mitophagy protects against acetaminophen-induced acute liver injury in mice through inhibiting NLRP3 inflammasome activation. Biochem Pharmacol 169:113643

    CAS  PubMed  Google Scholar 

  • Sharma M, Gadang V, Jaeschke A (2012) Critical role for mixed-lineage kinase 3 in acetaminophen-induced hepatotoxicity. Mol Pharmacol 82:1001–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen HH, Yang YX, Meng X et al (2018) NLRP3: a promising therapeutic target for autoimmune diseases. Autoimmun Rev 17:694–702

    CAS  PubMed  Google Scholar 

  • Smilkstein MJ, Knapp GL, Kulig KW et al (1988) Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. Analysis of the national multicenter study (1976 to 1985). N Engl J Med 319:1557–1562

    CAS  PubMed  Google Scholar 

  • Tian H, Li Y, Kang P et al (2019) Endoplasmic reticulum stress-dependent autophagy inhibits glycated high-density lipoprotein-induced macrophage apoptosis by inhibiting CHOP pathway. J Cell Mol Med 23:2954–2969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres S, Baulies A, Insausti-Urkia N et al (2019) Endoplasmic reticulum stress-induced upregulation of STARD1 promotes acetaminophen-induced acute liver failure. Gastroenterology 157:552–568

    CAS  PubMed  Google Scholar 

  • Unno R, Kawabata T, Taguchi K et al (2020) Deregulated MTOR (mechanistic target of rapamycin kinase) is responsible for autophagy defects exacerbating kidney stone development. Autophagy 16:709–723

    CAS  PubMed  Google Scholar 

  • Uzi D, Barda L, Scaiewicz V et al (2013) CHOP is a critical regulator of acetaminophen-induced hepatotoxicity. J Hepatol 59:495–503

    CAS  PubMed  Google Scholar 

  • Valverde DP, Yu S, Boggavarapu V et al (2019) ATG2 transports lipids to promote autophagosome biogenesis. Upregulation of ATG7 attenuates motor neuron dysfunction associated with depletion of TARDBP/TDP-43. J Cell Biol 218:1787–1798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vegliante R, Ciriolo MR (2018) Autophagy and autophagic cell death: uncovering new mechanisms whereby dehydroepiandrosterone promotes beneficial effects on human health. Vitam Horm 108:273–307

    PubMed  Google Scholar 

  • Vives-Bauza C, Zhou C, Huang Y et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107:378–383

    CAS  PubMed  Google Scholar 

  • Wang H, Ni HM, Chao X et al (2019a) Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice. Redox biology 22:101148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wei W, **ao Q et al (2019b) Farrerol ameliorates APAP-induced hepatotoxicity via activation of Nrf2 and autophagy. Int J Biol Sci 15:788–799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Lin YX, Wang J et al (2019c) Manipulation of dendritic cells by an autophagy-regulative nanoactivator enables effective cancer immunotherapy. ACS Nano 13:7568–7577

    CAS  PubMed  Google Scholar 

  • Williams JA, Ding WX (2015) targeting Pink1-Parkin-mediated mitophagy for treating liver injury. Pharmacol Res 102:264–269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JA, Ni HM, Haynes A et al (2015a) Chronic deletion and acute knockdown of parkin have differential responses to acetaminophen-induced mitophagy and liver injury in mice. J Biol Sci 290:10934–10946

    CAS  Google Scholar 

  • Williams JA, Ni HM, Haynes A et al (2015b) Chronic deletion and acute knockdown of parkin have differential responses to acetaminophen-induced mitophagy and liver injury in mice. J Biol Chem 290:10934–10946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MI, Dooley HC, Tooze SA (2014) WIPI2b and Atg16L1: setting the stage for autophagosome formation. Biochem Soc Trans 42:1327–1334

    CAS  PubMed  Google Scholar 

  • **e Z, Nair U, Klionsky DJ (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19:3290–3298

    CAS  PubMed  PubMed Central  Google Scholar 

  • **e Y, Ramachandran A, Breckenridge DG et al (2015) Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Toxicol Appl Pharmacol 286:1–9

    PubMed  PubMed Central  Google Scholar 

  • Yan M, Huo Y, Yin S et al (2018a) Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol 17:274–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan M, Ye L, Yin S et al (2018b) Glycycoumarin protects mice against acetaminophen-induced liver injury predominantly via activating sustained autophagy. Br J Pharmacol 175:3747–3757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HZ, Oppenheim JJ (2017) Alarmins and immunity. Immunol Rev 280:41–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Z, Liu G, Guo J et al (2018) Hypothalamic endoplasmic reticulum stress as a key mediator of obesity-induced leptin resistance. Obes Rev 19:770–785

    CAS  PubMed  Google Scholar 

  • Yu Y, Richardson DR (2011) Cellular iron depletion stimulates the JNK and p38 MAPK signaling transduction pathways, dissociation of ASK1-thioredoxin, and activation of ASK1. J Biol Chem 286:15413–15427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Xu M, Zhang T et al (2019) Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. J Physiol Sci JPS 69:113–127

    CAS  PubMed  Google Scholar 

  • Zachari M, Ganley IG (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61:585–596

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Song F (2018) Knockout of ULK1/2 protects against acetaminophen-induced acute liver injury independent of autophagy? Hepatology 67:2476–2477

    PubMed  Google Scholar 

  • Zhang R, Al-Lamki R, Bai L et al (2004) Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res 94:1483–1491

    CAS  PubMed  Google Scholar 

  • Zhang NP, Liu XJ, **e L et al (2019) Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. Lab Investig J Tech Methods Pathol 99:749–763

    CAS  Google Scholar 

  • Zhong Z, Umemura A, Sanchez-Lopez E et al (2016) NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164:896–910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhang H, Zheng B et al (2016) Retinoic acid induced-autophagic flux inhibits ER-stress dependent apoptosis and prevents disruption of blood-spinal cord barrier after spinal cord injury. Int J Biol Sci 12:87–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Chang L, Luo Y et al (2019) Mst1 inhibition attenuates non-alcoholic fatty liver disease via reversing Parkin-related mitophagy. Redox Biol 21:101120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Dong B, Kim KH et al (2020) Vitamin D receptor activation in liver macrophages protects against hepatic endoplasmic reticulum stress in mice. Hepatology 71:1453–1466

    CAS  PubMed  Google Scholar 

  • Zhu Z, Yang C, Iyaswamy A et al (2019) Balancing mTOR signaling and autophagy in the treatment of Parkinson's disease. Int J Mol Sci. https://doi.org/10.3390/ijms20030728

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science and Technology Planning Project of Yunfu, Guangdong, China (no. 201702-9); Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, China (no. 2017GCZX002); and the Science and Technology Planning Project of Guangdong, China (no. 201806040009, 201804010349, 201804010329); Innovation Strong School Project of Guangdong Pharmaceutical University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiao Guo or Zhengquan Su.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Q., Liu, Y., Deng, X. et al. Autophagy: a promising process for the treatment of acetaminophen-induced liver injury. Arch Toxicol 94, 2925–2938 (2020). https://doi.org/10.1007/s00204-020-02780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-020-02780-9

Keywords

Navigation