Log in

Investigation on characterization, antifouling and cytotoxic properties of zinc oxide nanoparticles biosynthesized by a mangrove-associated actinobacterium Streptomyces olivaceus (MSU3)

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The present study was undertaken to biosynthesize zinc oxide nanoparticles (ZnONPs) using a mangrove-associated actinobacterium Streptomyces olivaceus (MSU3) under in vitro conditions. The synthesized ZnONPs were structurally characterized through UV, FT-IR, TG–DTA, XRD, SEM and EDX analysis. Analysis of biosynthesized ZnONPs in UV–Vis spectroscopy showed presence of functional groups between the wavelengths 325 and 380 nm. FT-IR analysis showed the functional groups, such as halo bromide (C–Br), alkyne (C≡C), carboxylic acid (O–H), nitro (N–O), fluoro (C–F), alkene (C=C) and aromatic (R–C–H) groups, respectively, within the wave numbers between 614.30 and 3074.41 cm−1. The crystalline poly-dispersed quasi spherical nature of ZnONPs expressed the average particle size of 37.9 nm with the 2θ values of 11.802–37.885°. Antibacterial activity of ZnONPs showed pronounced inhibitory zone (25 mm) and least MIC and MBC values (125 and 250 µg ml−1) against Escherchia sp. In the antifouling study, ZnONPs strongly inhibited byssal thread formation in mussel Perna indica and recorded LC50 value of 424.47 µg ml−1. Mollusc foot adherence assay inferred that the ZnONPs effectively inhibited settlement of limpet Patella vulgata and showed minimal fouling (26.43%) at 350 µg ml−1 and recorded LC50 value of 218.77 µg ml−1. Results of anticrustacean assay depicted that, ZnONPs had registered LC50 value of 676.08 µg ml−1 against Artemia salina nauplii. From this study, it could be concluded that an eco-friendly approach could be used to open a new avenue for biosynthesis of ZnONPs from a mangrove associated actinobacterium S. olivaceus (MSU3) in antifouling studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abd El-Twab A, El-Hofy F, El-Hamalawy A, Abu-Ela A, El-Shazly W (2020) Antibacterial activity of different nanoparticles on local pathogenic multi-drug resistant Escherichia coli. Nat Sci 18(4):88–95

    Google Scholar 

  • Abdel Rahim K, Mahmoud SY, Mohamed Ali A, Almaary KS, Mustafa MA, Moussa S (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci 24:208–216

    Article  CAS  Google Scholar 

  • Abdo AM, Fouda A, Eid AM, Fahmy NM, Elsayed AM, Aly Khalil AM, Alzahrani OM, Ahemd AF, Soliman AM (2021) Green synthesis of zinc oxide nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and their activity against pathogenic microbes and common house mosquito Culex pipiens. Materials 14:69–83

    Article  Google Scholar 

  • Alekish M, Ismail ZB, Albiss B, Nawasrah S (2018) In vitro antibacterial effects of zinc oxide nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Escherichia coli: An alternative approach for antibacterial therapy of mastitis in sheep. Vet World 11(10):1428–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycetes Streptomyce sviridogens strain HM10. Indian J Biochem Biophys 48:331–335

    CAS  PubMed  Google Scholar 

  • Balraj B, Senthilkumar K, Siva C, Krithikadevi R, Julie A, Vetha Potheher I, Arulmozhi M (2017) Synthesis and characterization of Zinc oxide nanoparticles using marine Streptomyces sp. with its investigation on anticancer and antibacterial activity. Res Chem Intermed 43:2367–2376

    Article  CAS  Google Scholar 

  • Baskaran R, Mohan PM, Sivakumar K, Kumar A (2016) Antimicrobial activity and phylogenetic analysis of Streptomyces parvulus dosmb-d105 isolated from the mangrove sediments of Andaman Islands. Acta Microbiol Immunol Hung 63(1):27–46

    Article  CAS  PubMed  Google Scholar 

  • Bhagat J, Greeshma SS, Shyama SK (2019) Genotoxicity of cerium oxide nanoparticles in zebrafish and green mussel Perna viridis using alkaline comet assay. Life Int J Health Life Sci 4(3):118–127

    Article  Google Scholar 

  • Bindhu MR, Ancy BK, Umadevi M, Esmail GA, Al-Dhabid NA, Arasu MV (2020) Synthesis and characterization of zinc oxide nanostructures and its assessment on enhanced bacterial inhibition and photocatalytic degradation. J Photochem Photobiol B 210:1–10

    Article  CAS  Google Scholar 

  • Chapman J, Nor LL, Brown R, Kitteringham E, Russell S, Sullivan T, Regan F (2013) Antifouling performances of macro-to micro to nano-copper materials for the inhibition of biofouling in its early stages. J Mater Chem B1:6194–6200

    Google Scholar 

  • Daglioglu Y, Altinok I, Ilhan H, Sokmen M (2016) Determination of the acute toxic effect of ZnO-TiO2 nanoparticles in brine shrimp (Artemia salina). Acta Biol Turcica 29(1):6–13

    Google Scholar 

  • Das S, Lyla PS, Khan SA (2008) Distribution and generic composition of culturable marine actinomycetes from the sediments of Indian continental slope of Bay of Bengal. Chin J Oceanol Limnol 26:166–177

    Article  Google Scholar 

  • Dineshram R, Subasri R, Somaraju KR, Jayaraj K, Vedaprakash L, Ratnam K, Joshi SV, Venkatesan R (2009) Biofouling studies on nanoparticle-based metal oxide coatings on glass coupons exposed to marine environment. Colloids Surf B 74:75–83

    Article  CAS  Google Scholar 

  • Durai NSPR, Arul D, Aiswarya D, Perumal P (2019) Extracellular biosynthesis, characterization and cytotoxic effects of zinc oxide nanoparticles synthesized from the supernatant of probiotic bacterium Bacillus amyloliquefaciens CS4. Int J Sci Technol Res 8(9):950–955

    Google Scholar 

  • Fahmy SR, Sayed DA (2017) Toxicological perturbations of Zinc oxide nanoparticles in the Coelatura aegyptiaca mussel. Toxicol Ind Health 33(7):564–575

    Article  CAS  PubMed  Google Scholar 

  • Gagné F, Turcotte P, Auclair J, Gagnon C (2013) The effects of zinc oxide nanoparticles on the metallome in freshwater mussels. Comp Biochem Physiol 158:22–28

    Google Scholar 

  • Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22(6):693–700

    Article  Google Scholar 

  • Halbus AF, Horozov TS, Paunov VN (2020) Surface-modified zinc oxide nanoparticles for antialgal and anti-yeast applications. ACS Appl Nano Mater 3:440–451

    Article  CAS  Google Scholar 

  • Hanna SK, Miller RJ, Muller EB, Nisbet RM, Lenihan HS (2013) Impact of engineered zinc oxide nanoparticles on the individual performance of Mytilus galloprovincialis. PLoS ONE 8(4):e61800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hind AAZ, Amr AEW, Dina EEG (2018) Biosynthesis and evaluation of TiO2 and ZnO nanoparticles from in vitro stimulation of Lactobacillus johnsonii. J Innov Pharm 5(1):16–20

    Google Scholar 

  • Hu M, Lin D, Shang Y, Hu Y, Lu W, Huang X (2017) CO2 induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus. Sci Rep 7:1–11

    CAS  Google Scholar 

  • Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbid NS, Kadaikunnan S, Al-anbr MN, Khaled JM, Benelli G (2018) Facile green synthesis of Zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B 178:249–258

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Abdul Rahuman A, Vishnu Kirthi A, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Bhaskara Rao KV (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84

    Article  CAS  PubMed  Google Scholar 

  • Kalpana VN, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Devi Rajeswari V (2018) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: antimicrobial textiles and dye degradation studies. Open Nano 3:48–55

    Google Scholar 

  • Krupa ND, Grace AN, Raghavan V (2019) Process optimisation for green synthesis of ZnO nanoparticles and evaluation of its antimacrofouling activity. IET Nanobiotechnol 13(5):54–58

    Article  Google Scholar 

  • Kundu D, Hazra C, Chatterjee A, Chaudhari A, Mishra S (2014) Extracellular biosynthesis of zinc oxidenanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J Photochem Photobiol 140:194–204

    Article  CAS  Google Scholar 

  • Meyer BN, Ferrigni NA, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL (1982) Brine shrimp: a convenient general bioassay for active plant constituents. J Med Plant Res 45:31–34

    Article  CAS  Google Scholar 

  • Nandanwar S, Lee MW, Borkar S, Cho JH, Tarte NH, Kim HJ (2020) Synthesis, characterization and antialgal activity of molybdenum-doped metal oxides. Catalysts 10:805

    Article  CAS  Google Scholar 

  • Prakash S, Ramasubburayan S, Iyapparaj P, Kumar C, **itha Mary C, Palavesam A, Immanuel G (2013) Screening and partial purification of antifungal metabolite from Streptomyces rochei MSA14: an isolate from marine mining soil of Southwest coast of India. Indian J Geo-Mar Sci 42:888–897

    Google Scholar 

  • Qin X, Lu W, Luo Y, Chang G, Sun X (2011) Preparation of Ag nanoparticles decorated polypyrrole colloids and their application for H2O2 detection. Electrochem Commun 13:785–787

    Article  CAS  Google Scholar 

  • Rajapriya M, Sharmili SA, Baskar R, Balaji R, Alharbi NS, Kadaikunnan S, Khaled JM, Alanzi KF, Vaseeharan B (2019) Synthesis and characterization of zinc oxide nanoparticles using Cynarascolymus leaves: enhanced hemolytic, antimicrobial, antiproliferative and photocatalytic activity. J Clust Sci 31:791–801

    Article  CAS  Google Scholar 

  • Ramasubburayan R, Titus S, Verma PK, Immanuel G, Palavesam A (2014) Isolation, screening and optimization of culture conditions for enhanced antibacterial activity by a marine epibiotic bacterium Bacillus flexus APGI against fouling bacterial strains. J Pure Appl Microbiol 8:2909–2920

    Google Scholar 

  • Ramasubburayan R, Sumathi S, Magi Bercy D, Immanuel G, Palavesam A (2015) Antimicrobial, antioxidant and anticancer activities of mangrove associated bacterium Bacillus subtilis subsp. subtilis RG. Biocatal Agric Biotechnol 4:158–165

    Article  Google Scholar 

  • Ramasubburayan R, Sumathi S, Prakash S, Sri Ramkumar V, Titus S, Immanuel G, Palavesam A (2017a) Synthesis of nano silver by a marine epibiotic bacterium Bacillus vallismortis and its potential ecofriendly antifouling properties. Environ Nanotechnol Monit Manage 8:112–120

    Google Scholar 

  • Ramasubburayan R, Prakash S, Venkatesan S, Palavesam A, Immanuel G (2017b) Environmentally benign antifoulilng activity and toxic properties of bioactive metabolites from mangrove Excoecaria agallocha. Environ Sci Pollut Res 24:27490–27501

    Article  CAS  Google Scholar 

  • Rouhi J, Mahmud S, Naderi N, Ooi CR, Mahmood MR (2013) Physical properties of fish gelatin-based bio nanocomposite films incorporated with ZnO nano rods. Nanoscale Res Lett 8:364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanjivkumar M, Brindhashini A, Deivakumari M, Palavesam A, Immanuel G (2018) Investigation on saccharification and bioethanol production from pretreated agro-residues using a mangrove associated actinobacterium Streptomyces variabilis (MAB3). Waste Biomass Valor 9:969–984

    Article  CAS  Google Scholar 

  • Sanjivkumar M, Vaishnavi R, Neelakannan M, Kannan D, Silambarasan T, Immanuel G (2019) Investigation on characterization and biomedical properties of silver nanoparticles synthesized by an actinobacterium Streptomyces olivaceus (MSU3). Biocatal Agric Biotechnol 17:151–159

    Article  Google Scholar 

  • Selvin J, Lipton AP (2002) Development of a rapid mollusc foot adherence bioassay for detecting potent antifouling bioactive compounds. Curr Sci 83(6):735–737

    Google Scholar 

  • Shanmugasundaram T, Balagurunathan R (2016) Biomedically active zinc oxide nanoparticles synthesized by using extremophilic actinobacterium, Streptomyces sp. (MA30) and its characterization. Artif Cells Nanomed Biotechnol 45(8):1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Siddique S, Shah ZH, Shahid S, Yasmin F (2013) Preparation, characterization and antibacterial activity of ZnO nanoparticles on broad spectrum of microorganisms. Acta Chim Slov 60:660–665

    CAS  PubMed  Google Scholar 

  • Składanowski M, Wypij M, Laskowski D, Golinska P, Dahm H, Rai M (2017) Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. J Clust Sci 28:59–79

    Article  CAS  Google Scholar 

  • Uddandarao P, Balakrishnan RM (2017) Thermal and optical characterization of biologically synthesized ZnS nanoparticles synthesized from an endophytic fungus Aspergillus flavus: a colorimetric probe in metal detection. Spectrochim Acta A Mol Biomol Spectrosc 175:200–207

    Article  CAS  PubMed  Google Scholar 

  • Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran R (2010) Synthesis of metal oxide nano particles by Streptomyces sp for development of antimicrobial textiles. Glob J Biotech Biochem 5(3):153–160

    CAS  Google Scholar 

  • Wang J, Du L, Fu Y, Jiang P, Wang X (2019) ZnO nanoparticles inhibit the activity of Porphyromonas gingivalis and Actinomyces naeslundii and promote the mineralization of the cementum. BMC Oral Health 19:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilsanand A, Wagh B, Bapuji M (1999) Antifouling activities of marine sedentary invertebrates on some macrofoulers. Indian J Mar Sci 28:280–284

    Google Scholar 

  • Xu S, Sun T, Xu Q, Duan C, Dai Y, Wang L, Song Q (2018) Preparation and antibiofilm properties of zinc oxide/porous anodic alumina composite films. Nanoscale Res Lett 13:201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yusof HM, Mohamad R, Zaidan UH, Abdul Rahman NA (2020) Sustainable microbial cell nano factory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4. Microb Cell Fact 19(10):1–17

    Google Scholar 

  • Yusof HM, Abdul Rahman NA, Mohamad R, Hasanah Zaidan U, Asmara Samsudin A (2020) Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Sci Rep 10:19996

    Article  CAS  Google Scholar 

Download references

Funding

Research grant from Department of Science and Technology, Science and Engineering Board (DST-SERB), New Delhi, Govt. of India (Research grant No: EMR/2017/001453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Immanuel.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest in this research.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rameshbabu, D., Saro**i, K., Sanjivkumar, M. et al. Investigation on characterization, antifouling and cytotoxic properties of zinc oxide nanoparticles biosynthesized by a mangrove-associated actinobacterium Streptomyces olivaceus (MSU3). Arch Microbiol 204, 386 (2022). https://doi.org/10.1007/s00203-022-02971-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-02971-1

Keywords

Navigation