Log in

Functional characterization of glucosamine-6-phosphate synthase (GlmS) in Salmonella enterica serovar Enteritidis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Salmonella is a threat to public health due to consumption of contaminated food. Screening of a transposon library identified a unique mutant that was growth and host cell binding deficient. The objective of this study was to determine the functional role of glucosamine-6-phosphate synthase (GlmS) in the biology and pathogenesis of Salmonella. To examine this, we created a glmS mutant (ΔglmS) of Salmonella and examined the effect on cell envelope integrity, growth, metabolism, and pathogenesis. Our data indicated ΔglmS was defective in growth unless media were supplemented with d-glucosamine (d-GlcN). Examination of the bacterial cell envelope revealed that ΔglmS was highly sensitive to detergents, hydrophobic antibiotics, and bile salts compared to the wild type (WT). A release assay indicated that ΔglmS secreted higher amounts of β-lactamase than the WT in culture supernatant fractions. Furthermore, ΔglmS was attenuated in cell culture models of Salmonella infection. Taken together, this study determined an important role for GlmS in the pathogenesis and biology of Salmonella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson JS, Matsuhashi M, Haskin MA, Strominger JL (1965) Lipid-phosphoacetylmuramyl-pentapeptide and lipid-phosphodisaccharide-pentapeptide: presumed membrane transport intermediates in cell wall synthesis. Proc Natl Acad Sci USA 53:881–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badet B, Vermoote P, Haumont PY, Lederer F, LeGoffic F (1987) Glucosamine synthetase from Escherichia coli: purification, properties, and glutamine-utilizing site location. Biochemistry 26:1940–1948

    Article  CAS  PubMed  Google Scholar 

  • Badet B, Vermoote P, Le Goffic F (1988) Glucosamine synthetase from Escherichia coli: kinetic mechanism and inhibition by N3-fumaroyl-L-2,3-diaminopropionic derivatives. Biochemistry 27:2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Bebrone C et al (2001) CENTA as a chromogenic substrate for studying β-lactamases. Antimicrob Agents Chemother 45:1868–1871. doi:10.1128/AAC.45.6.1868-1871.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchrieser C, Brosch R, Buchrieser O, Kristl A, Luchansky JB, Kaspar CW (1997) Genomic analyses of Salmonella enteritidis phage type 4 strains from Austria and phage type 8 strains from the United States. Zentralbl Bakteriol 285:379–388

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Ingram JM, Cheng KJ (1974) Structure and function of the cell envelope of gram-negative bacteria. Bacteriol Rev 38:87–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin KH, Miller VL (1999) Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev 12:405–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. doi:10.1073/pnas.120163297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demchick P, Koch AL (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178:768–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dijkstra AJ, Keck W (1996) Peptidoglycan as a barrier to transenvelope transport. J Bacteriol 178:5555–5562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg CW, Ward JB (1972) N-acetylmuramyl-l-alanine amidase of Bacillus licheniformis and its L-form. J Bacteriol 110:878–888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg CW, Costerton JW, Macleod RA (1970) Separation and localization of cell wall layers of a gram-negative bacterium. J Bacteriol 104:1338–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galan JE (2001) Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17:53–86. doi:10.1146/annurev.cellbio.17.1.53

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Blumenthal HJ, Davidson E, Roseman S (1960) Glucosamine metabolism. V. Enzymatic synthesis of glucosamine 6-phosphate. J Biol Chem 235:1265–1273

    CAS  PubMed  Google Scholar 

  • Hancock RE, Bell A (1988) Antibiotic uptake into gram-negative bacteria. Eur J Clin Microbiol Infect Dis 7:713–720

    Article  CAS  PubMed  Google Scholar 

  • Howard SP, Gebhart C, Langen GR, Li G, Strozen TG (2006) Interactions between peptidoglycan and the ExeAB complex during assembly of the type II secretin of Aeromonas hydrophila. Mol Microbiol 59:1062–1072. doi:10.1111/j.1365-2958.2005.05003.x

    Article  CAS  PubMed  Google Scholar 

  • Izaki K, Matsuhashi M, Strominger JL (1968) Biosynthesis of the peptidoglycan of bacterial cell walls. 8. Peptidoglycan transpeptidase and d-alanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. J Biol Chem 243:3180–3192

    CAS  PubMed  Google Scholar 

  • Mead PS et al (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625. doi:10.3201/eid0505.990502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengin-Lecreulx D, van Heijenoort J (1993) Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J Bacteriol 175:6150–6157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mengin-Lecreulx D, van Heijenoort J (1994) Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J Bacteriol 176:5788–5795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mengin-Lecreulx D, van Heijenoort J (1996) Characterization of the essential gene glmM encoding phosphoglucosamine mutase in Escherichia coli. J Biol Chem 271:32–39

    Article  CAS  PubMed  Google Scholar 

  • Mikheil DM, Shippy DC, Eakley NM, Okwumabua OE, Fadl AA (2012) Deletion of gene encoding methyltransferase (gidB) confers high-level antimicrobial resistance in Salmonella. J Antibiot 65:185–192. doi:10.1038/ja.2012.5

    Article  CAS  PubMed  Google Scholar 

  • Milewski S (2002) Glucosamine-6-phosphate synthase—the multi-facets enzyme. Biochim Biophys Acta 1597:173–192

    Article  CAS  PubMed  Google Scholar 

  • Mukhija S, Erni B (1996) Purification by Ni2+ affinity chromatography, and functional reconstitution of the transporter for N-acetylglucosamine of Escherichia coli. J Biol Chem 271:14819–14824

    Article  CAS  PubMed  Google Scholar 

  • Nakae T, Nikaido H (1975) Outer membrane as a diffusion barrier in Salmonella typhimurium. Penetration of oligo- and polysaccharides into isolated outer membrane vesicles and cells with degraded peptidoglycan layer. J Biol Chem 250:7359–7365

    CAS  PubMed  Google Scholar 

  • Pucciarelli MG, Garcia-del Portillo F (2003) Protein-peptidoglycan interactions modulate the assembly of the needle complex in the Salmonella invasion-associated type III secretion system. Mol Microbiol 48:573–585

    Article  CAS  PubMed  Google Scholar 

  • Sanderson KE, MacAlister T, Costerton JW, Cheng KJ (1974) Permeability of lipopolysaccharide-deficient (rough) mutants of Salmonella typhimurium to antibiotics, lysozyme, and other agents. Can J Microbiol 20:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Scallan E et al (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15. doi:10.3201/eid1701.091101p1

    Article  PubMed  PubMed Central  Google Scholar 

  • Sha J, Fadl AA, Klimpel GR, Niesel DW, Popov VL, Chopra AK (2004) The two murein lipoproteins of Salmonella enterica serovar Typhimurium contribute to the virulence of the organism. Infect Immun 72:3987–4003. doi:10.1128/IAI.72.7.3987-4003.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shippy DC, Eakley NM, Bochsler PN, Chopra AK, Fadl AA (2011) Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene. Microb Pathogen 50:303–313. doi:10.1016/j.micpath.2011.02.004

    Article  CAS  Google Scholar 

  • Shippy DC, Eakley NM, Mikheil DM, Fadl AA (2014) Role of the flagellar basal-body protein, FlgC, in the binding of Salmonella enterica serovar Enteritidis to host cells. Curr Microbiol 68:621–628. doi:10.1007/s00284-014-0521-z

    Article  CAS  PubMed  Google Scholar 

  • Vogler AP, Trentmann S, Lengeler JW (1989) Alternative route for biosynthesis of amino sugars in Escherichia coli K-12 mutants by means of a catabolic isomerase. J Bacteriol 171:6586–6592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HC, Wu TC (1971) Isolation and characterization of a glucosamine-requiring mutant of Escherichia coli K-12 defective in glucosamine-6-phosphate synthetase. J Bacteriol 105:455–466

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the Department of Animal Sciences and the Graduate School, University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin A. Fadl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, A.M., Shippy, D.C., Eakley, N. et al. Functional characterization of glucosamine-6-phosphate synthase (GlmS) in Salmonella enterica serovar Enteritidis. Arch Microbiol 198, 541–549 (2016). https://doi.org/10.1007/s00203-016-1212-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1212-x

Keywords

Navigation