Log in

Numerical investigation of a chemically reacting and rarefied hypersonic flow field

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Numerical simulations are carried out in the non-continuum flow regime to analyze flow features in the shock layer of a reentry vehicle. A new solver, rarefiedHypersonicFoam, has been developed based on the OpenFOAM platform, which can simulate the intermediate hypersonic reacting flow regime, where chemical non-equilibrium effects are imperative. The solver accommodates features to model air chemistry, multispecies transport, thermodynamic properties of high-temperature air, and non-equilibrium boundary conditions. The solver is validated with ballistic range experimental data for shock standoff distance and heat flux values over a conical reentry vehicle. Results have exhibited good agreement with the experimental data and show significant improvement when compared with the conventional high-speed compressible flow solver. The modified solver is used to analyze hypersonic flow over a bi-conic reentry capsule at different altitudes and velocities in the rarefied hypersonic flow regime. The results show that at lower altitude, chemical reactions absorb a considerable amount of heat compared to higher altitude. The rate of reaction reduces with the decrease in the flow velocity, which results in reduced heat flux values. It is observed that, if only rarefaction effects are considered in the solver, it overpredicts the heat flux values. Therefore, incorporation of chemical reactions while analyzing rarefied hypersonic flow fields is imperative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bertin, J.J.: Hypersonic Aerothermodynamics. AIAA, Washington (1994)

    Google Scholar 

  2. Gupta, R.N., Jerrold M.Y., Richard A.T., Lee K.: A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. NASA Technical Memorandum 1232 (1990)

  3. Anderson Jr., J.D.: Modern Compressible Flow: With Historical Perspective, vol. 12. McGraw-Hill, New York (1990)

    Google Scholar 

  4. Anderson Jr., J.D.: Hypersonic and High Temperature Gas Dynamics. AIAA, Washington (2006)

    Book  Google Scholar 

  5. Furudate, M., Satoshi, N., Keisuke, S.: Behavior of two-temperature model in intermediate hypersonic regime. J. Thermophys. Heat Transf. 13(4), 424–430 (1999). https://doi.org/10.2514/2.6480

    Article  Google Scholar 

  6. Park, C., Park, C.: Validation of CFD codes for real-gas regime. 32nd Thermophysics Conference, AIAA 1997–2530 (1997). https://doi.org/10.2514/6.1997-2530

  7. OpenFoam.: OpenFOAM v2.3.0. The Open Source CFD Toolbox. Free Software Foundation, Inc. (2014). Accessed 2 Nov 2018

  8. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23(3), 707–740 (2001). https://doi.org/10.1137/S1064827500373413

    Article  MathSciNet  MATH  Google Scholar 

  9. Greenshields, C.J., Weller, H.G., Gasparini, L., Reese, J.M.: Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids 63(1), 1–21 (2010). https://doi.org/10.1002/fld.2069

    MathSciNet  MATH  Google Scholar 

  10. Maxwell, J.C.: On stresses in rarefied gases arising from inequalities of temperature. Proc. R. Soc. Lond. 27(185–189), 304–308 (1878). https://doi.org/10.1098/rspl.1878.0052

    MATH  Google Scholar 

  11. Smoluchowski von Smolan, M.: Über wärmeleitung in verdünnten gasen. Ann. Phys. 300(1), 101–130 (1898). https://doi.org/10.1002/andp.18983000110

    Article  MATH  Google Scholar 

  12. Le, N.T.P., Greenshields, C.J., Reese, J.M.: Evaluation of nonequilibrium boundary conditions for hypersonic rarefied gas flows. Progr. Flight Phys. 3, 217–230 (2012). https://doi.org/10.1051/eucass/201203217

    Article  Google Scholar 

  13. Le, N.T., Shoja-Sani, A., Roohi, E.: Rarefied gas flow simulations of NACA 0012 airfoil and sharp 25–55-deg biconic subject to high order nonequilibrium boundary conditions in CFD. Aerosp. Sci. Technol. 41, 274–288 (2015). https://doi.org/10.1016/j.ast.2014.12.019

    Article  Google Scholar 

  14. Shoja-Sani, A., Roohi, E., Kahrom, M., Stefanov, S.: Investigation of aerodynamic characteristics of rarefied flow around NACA 0012 airfoil using DSMC and NS solvers. Eur. J. Mech. B Fluids 48, 59–74 (2014). https://doi.org/10.1016/j.euromechflu.2014.04.008

    Article  MathSciNet  MATH  Google Scholar 

  15. Lofthouse, A.J.: Nonequilibrium Hypersonic Aerothermodynamics Using the Direct Simulation Monte Carlo and Navier–Stokes Models (No. CIO8-0001). Michigan University, Ann Arbor (2008)

  16. Lofthouse, A.J., Scalabrin, L.C., Boyd, I.D.: Velocity slip and temperature jump in hypersonic aerothermodynamics. J. Thermophys. Heat Transf. 22(1), 38–49 (2008). https://doi.org/10.2514/1.31280

    Article  Google Scholar 

  17. Gijare, H., Assam, A., Dongari, N.: Aero-thermodynamics optimization of re-entry capsule in the slip flow regime. 1st International ISHMT-ASTFE Heat and Mass Transfer Conference (2015)

  18. Bhagat, A. Mopuru, D.R., Dongari, N., Saraswat, V.K.: Effect of nozzle divergence angle on plume expansion in outer-space conditions. 1st International ISHMT-ASTFE Heat and Mass Transfer Conference (2015)

  19. Bansal, A., Feldick, A., Modest, M.: Simulation of hypersonic flow and radiation over a mars reentry vehicle using OpenFOAM. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, AIAA Paper 2012-650 (2012). https://doi.org/10.2514/6.2012-650

  20. Casseau, V., Espinoza, D.E., Scanlon, T.J., Brown, R.E.: A two-temperature open-source CFD model for hypersonic reacting flows, part two: multi-dimensional analysis. Aerospace 3(4), 45 (2016). https://doi.org/10.3390/aerospace3040045

    Article  Google Scholar 

  21. Casseau, V., Palharini, R.C., Scanlon, T.J., Brown, R.E.: A two-temperature open-source CFD model for hypersonic reacting flows, part one: zero-dimensional analysis. Aerospace 3(4), 34 (2016). https://doi.org/10.3390/aerospace3040034

    Article  Google Scholar 

  22. McBride, B.J., Gordon, S., Reno, M.A.: Coefficients for calculating thermodynamic and transport properties of individual species. NASA Technical Memorandum 4513 (1993)

  23. Gnoffo, P.A., Gupta, R.N., Shinn, J.L.: Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium. NASA Technical Memorandum 2867 (1989)

  24. Bird, R.B.: Transport phenomena. Appl. Mech. Rev. 55(1), R1–R4 (2002). https://doi.org/10.1115/1.1424298

    Article  Google Scholar 

  25. Vincenti, W.G., Kruger, C.H.: Introduction to Physical Gas Dynamics. Wiley, New York (1965)

    Google Scholar 

  26. Muylaert, J., Walpot, L., Vennemann, D.: A review of European code-validation studies in high-enthalpy flow. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 357(1759), 2249–2278 (1999). https://doi.org/10.1098/rsta.1999.0430

    Article  Google Scholar 

  27. Billig, F.S.: Shock-wave shapes around spherical- and cylindrical-nosed bodies. J. Spacecr. Rockets 4(6), 822–823 (1967). https://doi.org/10.2514/3.28969

    Article  Google Scholar 

  28. Nonaka, S., Mizuno, H., Takayama, K., Park, C.: Measurement of shock standoff distance for sphere in ballistic range. J. Thermophys. Heat Transf. 14(2), 225–229 (2000). https://doi.org/10.2514/2.6512

    Article  Google Scholar 

  29. Nagdewe, S.P., Shevare, G.R., Kim, H.D.: Study on the numerical schemes for hypersonic flow simulation. Shock Waves 19(5), 433–442 (2009). https://doi.org/10.1007/s00193-009-0229-3

    Article  MATH  Google Scholar 

  30. Kennard, E.H.: Kinetic Theory of Gases, with an Introduction to Statistical Mechanics. McGraw-Hill, New York (1938)

    Google Scholar 

Download references

Acknowledgements

The research was supported by the Department of Science and Technology (DST): SERB/F/2684/2014-15 and Ministry of Human Resource Development (MHRD) fellowship. We would like to acknowledge V. K. Saraswat for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Dongari.

Additional information

Communicated by K. Hannemann and A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gijare, H., Bhagat, A. & Dongari, N. Numerical investigation of a chemically reacting and rarefied hypersonic flow field. Shock Waves 29, 857–871 (2019). https://doi.org/10.1007/s00193-018-0882-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0882-5

Keywords

Navigation