Log in

Effect of microstructure on the detonation initiation in energetic materials

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In this work we examine the role of the microstructure on detonation initiation of energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The deposition term is based on simulations of void collapse at the microscale, modeled at the mesoscale as hot-spots, while the reaction rate at the mesoscale is modeled using density-based kinetics. We carry out two-dimensional simulations of random packs of HMX crystals in a binder. We show that mean particle size, size distribution, and particle shape have a major effect on the transition between detonation and no-detonation, thus highlighting the importance of the microstructure for shock-induced initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baer, M.R.: Modeling heterogeneous energetic materials at the mesoscale. Thermochim. Acta 384, 351–367 (2002). https://doi.org/10.1016/S0040-6031(01)00794-8

    Article  Google Scholar 

  2. Reaugh, J.E.: Grain-scale dynamics in explosives. Lawrence Livermore National Laboratory Report UCRL-ID-150388 (2002)

  3. Baer, M.R.: Mesoscale modeling of shocks in heterogeneous reactive materials. In: Horie, Y. (ed.) Shock Wave Science and Technology Reference Library. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-68408-4_8

    Google Scholar 

  4. Moulard, H.: Particular aspect of the explosive particle size effect on shock sensitivity of cast PBX formulations. In: Proceedings of the 9th Symposium (International) on Detonation, Portland, OR, 27 Aug–1 Sept, pp. 18–24 (1989)

  5. Moulard, H., Kury, J.W., Delclos, A.: The effect of RDX particle size on the shock sensitivity of cast PBX formulations. In: Proceedings of the 8th Symposium (International) on Detonation, Albuquerque, NM, 15–19 July, pp. 902–913 (1985)

  6. Lee, E.L., Tarver, C.M.: Phenomenological model of shock initiation in heterogeneous explosives. Phys. Fluids 23, 2362–2372 (1980). https://doi.org/10.1063/1.862940

    Article  Google Scholar 

  7. Schedlbauer, F., Kretschmer, A.: The influence of particle size and mechanical properties on the sensitivity of high explosive charges (PBX). In: Proceedings of the 10th Symposium (International) on Detonation, Boston, MA, 12–16 July, pp. 876–880 (2003)

  8. Wang, Z., Liu, Y., Zhang, J.: The influence of particle size on the shock sensitivities of RDX/F2641. In: Proceedings of the 5th International Symposium on Test and Measurement, Shenzhen, China, 1–5 June, pp. 849–852 (2003)

  9. Hussain, T., Liu, Y., Huang, F., Duan, Z.: Ignition and growth modeling of shock initiation of different particle size formulations of PBXC03 explosive. J. Energ. Mater. 34, 38–44 (2016). https://doi.org/10.1080/07370652.2014.995324

    Article  Google Scholar 

  10. van der Steen, A.C., Verbeek, H.J., Meulenbrugge, J.J.: Influence of RDX crystal shape on the shock sensitivity of PBXs. In: Proceedings of the 9th Symposium (International) on Detonation, Portland, OR, 27 Aug–1 Sept, pp. 83–88 (1989)

  11. Song, X., Li, F.: Dependence of particle size and size distribution on mechanical sensitivity and thermal stability of hexahydro-1,3,5-trinitro-1,3,5-triazine. Def. Sci. J. 59(1), 37–42 (2009)

    Article  Google Scholar 

  12. Tarver, C.M.: Ignition and growth modeling of LX-17 hockey puck experiments. Propellants Explos. Pyrotech. 30(2), 109–117 (2005). https://doi.org/10.1002/prep.200400092

    Article  Google Scholar 

  13. Tarver, C.M.: Ignition and growth reactive flow modeling of recent HMX/TATB detonation experiments. AIP Conf. Proc. 1793, 030004 (2017). https://doi.org/10.1063/1.4971462

    Article  Google Scholar 

  14. Jackson, T.L., Buckmaster, J., Zhang, J., Anderson, M.: Pore collapse in an energetic material from the micro-scale to the macro-scale. Combust. Theory Model. 19(3), 347–381 (2015). https://doi.org/10.1080/13647830.2015.1026401

    Article  MathSciNet  Google Scholar 

  15. Borne, L.: Explosive crystal microstructure and shock sensitivity of cast formations. In: Proceedings of the 11th Symposium (International) on Detonation, Snowmass, CO, 30 Aug–4 Sept, pp. 657–663 (1998)

  16. Borne, L., Beaucamp, A.: Effects of explosive crystal internal defects on projectile impact initiation. In: Proceedings of the 12th Symposium (International) on Detonation, San Diego, CA, 11–16 Aug, pp. 35–43 (2002)

  17. Borne, L., Ritter, H.: HMX as an impurity in RDX particles: Effect on the shock sensitivity of formulations based on RDX. Propellants Explos. Pyrotech. 31(6), 482–489 (2006). https://doi.org/10.1002/prep.200600066

    Article  Google Scholar 

  18. Borne, L., Mory, J., Schlesser, F.: Reduced sensitivity RDX (RS-RDX) in pressed formulations: Respective effects of intra-granular pores, extra-granular pores and pore sizes. Propellants Explos. Pyrotech. 33(1), 37–43 (2008). https://doi.org/10.1002/prep.200800206

    Article  Google Scholar 

  19. Zhang, J., Jackson, T.L., Buckmaster, J.D., Freund, J.B.: Numerical modeling of shock-to-detonation transition in energetic materials. Combust. Flame 159, 1769–1778 (2012). https://doi.org/10.1016/j.combustflame.2011.11.010

    Article  Google Scholar 

  20. Anderson, M.J., Jackson, T.L., Wasistho, B., Buckmaster, J.: A physics-based hot-spot model for pore collapse in HMX. In: Proceedings of the 15th Symposium (International) on Detonation, Annapolis, MD, pp. 951–961 (2014)

  21. Zhang, J., Jackson, T.L.: Direct detonation initiation with thermal deposition due to pore collapse in energetic materials—towards the coupling between micro- and macroscale. Combust. Theory Model. 21(2), 248–273 (2017). https://doi.org/10.1080/13647830.2016.1218053

    Article  MathSciNet  Google Scholar 

  22. Jackson, T.L., Zhang, J.: Density-based kinetics for mesoscale simulations of detonation initiation in energetic materials. Combust. Theory Model. 21(4), 749–769 (2017). https://doi.org/10.1080/13647830.2017.1296975

    Article  MathSciNet  Google Scholar 

  23. Jackson, T.L., Jost, A.M.D., Zhang, J., Sridharan, P., Amadio, G.: Multi-dimensional mesoscale simulations of detonation initiation in energetic materials with density-based kinetics. Combust. Theory Model. (2017). https://doi.org/10.1080/13647830.2017.1401121

    Google Scholar 

  24. Henson, B.F., Asay, B.W., Smilowitz, L.B., Dickson, P.: Ignition chemistry in HMX from thermal explosion to detonation. AIP Conf. Proc. 620, 1069–1072 (2002). https://doi.org/10.1063/1.1483723

    Article  Google Scholar 

  25. Tarver, C.M., Chidester, S.K., Nichols III, A.L.: Critical conditions for impact- and shock-induced hot spots in solid explosives. J. Phys. Chem. 100, 5794–5799 (1996). https://doi.org/10.1021/jp953123s

    Article  Google Scholar 

  26. Knott, G.M., Jackson, T.L., Buckmaster, J.: Random packing of heterogeneous propellants. AIAA J. 39(4), 678–686 (2001). https://doi.org/10.2514/2.1361

    Article  Google Scholar 

  27. Kochevets, S., Buckmaster, J., Jackson, T.L., Hegab, A.: Random packs and their use in the modeling of heterogeneous solid propellant combustion. J. Propul. Power 17(4), 883–891 (2001). https://doi.org/10.2514/2.5820

    Article  Google Scholar 

  28. Maggi, F., Stafford, S., Jackson, T.L., Buckmaster, J.: Nature of packs used in propellant modeling. Phys. Rev. E 77, 046107 (2008). https://doi.org/10.1103/PhysRevE.77.046107

    Article  Google Scholar 

  29. Stafford, D.S., Jackson, T.L.: Using level sets for creating virtual random packs of non-spherical convex shapes. J. Comput. Phys. 229, 3295–3315 (2010). https://doi.org/10.1016/j.jcp.2010.01.003

    Article  MATH  Google Scholar 

  30. Jackson, T.L., Hooks, D.E., Buckmaster, J.: Modeling the microstructure of energetic materials with realistic constituent morphology. Propellants Explos. Pyrotech. 36(3), 252–258 (2011). https://doi.org/10.1002/prep.201000096

    Article  Google Scholar 

  31. Amadio, G., Jackson, T.L.: A new packing code for creating microstructures of propellants and explosives. In: A New Packing Code for Creating Mirostructures of Propellants and Explosives, 51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, AIAA Paper 2015-4098 (2015). https://doi.org/10.2514/6.2015-4098

  32. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1997). https://doi.org/10.1007/b79761

    Book  MATH  Google Scholar 

  33. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994). https://doi.org/10.1007/BF01414629

    Article  MATH  Google Scholar 

  34. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998). https://doi.org/10.1090/S0025-5718-98-00913-2

    Article  MathSciNet  MATH  Google Scholar 

  35. Bell, J., Almgren, A., Beckner, V., Day, M., Lijewski, M., Nonaka, A., Zhang, W.: Boxlib’s User’s Guide. Lawrence Berkeley National Laboratory (2016)

  36. Shukla, R., Pantano, C., Freund, J.B.: An interface capturing method for the simulation of multi-phase compressible flows. J. Comput. Phys. 229, 7411–7439 (2010). https://doi.org/10.1016/j.jcp.2010.06.025

    Article  MathSciNet  MATH  Google Scholar 

  37. Arienti, M., Morano, E., Shepherd, J.E.: Shock and detonation modeling with the Mie–Gruneisen equation of state. Report No. FM99-8, Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA (2004)

  38. Dobratz, B.M.: LLNL explosives handbook—properties of chemical explosives and explosive simulants. LLNL Report UCRL-52997 (1981)

Download references

Acknowledgements

This work was supported in part by the Defense Threat Reduction Agency, Basic Research Award under Award No. HDTRA1-14-1-0031. This work was also supported in part by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhang.

Additional information

Communicated by A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Jackson, T.L. Effect of microstructure on the detonation initiation in energetic materials. Shock Waves 29, 327–338 (2019). https://doi.org/10.1007/s00193-017-0796-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0796-7

Keywords

Navigation