Log in

A short review on functionalized metallic surfaces by ultrafast laser micromachining

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Surface functionalization of metallic micro-nanoscale system is an emerging strategy for the realization of multifunctional materials. As a facile one-step process, ultrafast laser micromachining has emerged in recent years as a new technique for micro-nanostructure fabrication. In the past, lots of investigations on ultrafast laser micromachining were focused to understand the complex ablation mechanism, whereas recent works are mostly concerned with the fabrication of various metallic surface structures owing to their numerous potential functions, such as wetting, metallurgical and optical properties. This paper provides a short overview of advances in fabrication of functionalized metallic surfaces by ultrafast laser micromachining. The principles of interaction between ultrafast laser and metallic materials are provided. According to the surface topography, state-of-the-art knowledge on the fabrication of surface functionalization using ultrafast laser are presented. Functionalized properties of laser micro-machined metals are given. In addition, the challenges and outlooks in surface functionalized metals are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature 432(7013):36–36. https://doi.org/10.1038/432036a

  2. Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L (2007) The dry‐style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19(17):2213–2217. https://doi.org/10.1002/adma.200601946

  3. Guo Z, Liu W (2007) Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Sci 172(6)1103–1112. https://doi.org/10.1016/j.plantsci.2007.03.005

  4. Wu X, Bai Y, Zhao H, Zhou W, Tao H (2016) Femtosecond Laser Fabricate Wetting Function Micro-and Nanostructure on Aerial Aluminum Alloys Surface. Journal of Changchun University of science and Technology (Natural science Edition) 39(005):25–29,50. https://doi.org/10.3969/j.issn.1672-9870.2016.05.006

  5. Xue L, Yu J, Ma X, Liu Z, Tao H, Lin J (2018) Femtosecond Laser Fabricated Wetting Copper Surfaces and Their Anti-Icing Properties. Aeronautical Manufacturing Technology. https://doi.org/10.16080/j.issn1671-833x.2018.12.074

  6. Dimitrakellis P, Gogolides E (2018) Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review. Adv Colloid Interf Sci 254:1–21. https://doi.org/10.1016/j.cis.2018.03.009

  7. Zhou C, Li H, Lin J, Hou K, Yang Z, Pi P, Xu S, Wen X, Cheng J (2017) Matchstick-Like Cu2S@ CuxO Nanowire Film: Transition of Superhydrophilicity to Superhydrophobicity. J Phys Chem C 121(36):19716–19726. https://doi.org/10.1021/acs.jpcc.7b03645

  8. Yong J, Yang Q, Chen F, Hou X (2018) Femtosecond laser-induced superwetting surfaces. Chin Sci Bull 64(12):1213–1237

    Article  Google Scholar 

  9. Shan C, Yong J, Yang Q, Chen F, Huo J, Zhuang J, Jiang Z, Hou X (2018) Reversible switch between underwater superaerophilicity and superaerophobicity on the superhydrophobic nanowire-haired mesh for controlling underwater bubble wettability. Aip Advances 8(4):045001. https://doi.org/10.1063/1.5018864

  10. Fadeeva E, Chichkov B (2018) Biomimetic Liquid-Repellent Surfaces by Ultrafast Laser Processing. Applied Sciences-Basel 8(9). https://doi.org/10.3390/app8091424

  11. Liu M, Wang S, Wei Z, Song Y, Jiang L (2009) Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface. Adv Mater 21(6):665–669. https://doi.org/10.1002/adma.200801782

  12. Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33–34. https://doi.org/10.1038/35102108

  13. Lv J, Song Y, Jiang L, Wang J (2014) Bio-inspired strategies for anti-icing. ACS nano 8(4):3152–3169. https://doi.org/10.1021/nn406522n

  14. Long J, Wu Y, Gong D, Fan P, Jiang D, Zhang H, Zhong M (2015) Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties. Chin J Lasers 42(7):0706002. https://doi.org/10.3788/CJL201542.0706002

  15. Neinhuis WB (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8. https://doi.org/10.2307/23384993

  16. Zheng Y, Gao X, Jiang L (2007) Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3. https://doi.org/10.1039/b612667g

  17. Liang W, Zhu L, Li W, Liu H (2015) Facile fabrication of a flower-like CuO/Cu (OH) 2 nanorod film with tunable wetting transition and excellent stability. RSC Advances 5(48):38100–38110. https://doi.org/10.1039/c5ra04359j

  18. Rao AV, Latthe SS, Mahadik SA, Kappenstein C (2011) Mechanically stable and corrosion resistant superhydrophobic sol–gel coatings on copper substrate. Appl Surf Sci 257(13):5772–5776. https://doi.org/10.1016/j.apsusc.2011.01.099

  19. Wilkinson M, Kafizas A, Bawaked SM, Obaid AY, Al-Thabaiti SA, Basahel SN, Carmalt CJ, Parkin IP (2013) Combinatorial atmospheric pressure chemical vapor deposition of graded TiO2–VO2 mixed-phase composites and their dual functional property as self-cleaning and photochromic window coatings. ACS combinatorial science 15(6):309–319. https://doi.org/10.1021/co400027p

  20. Zhu H, Gao L, Yu X, Liang C, Zhang Y (2017) Durability evaluation of superhydrophobic copper foams for long-term oil-water separation. Appl Surf Sci 407:145–155. https://doi.org/10.1016/j.apsusc.2017.02.184

  21. Celia E, Darmanin T, de Givenchy ET, Amigoni S, Guittard F (2013) Recent advances in designing superhydrophobic surfaces. J colloid interface sci 402:1–18. https://doi.org/10.1016/j.jcis.2013.03.041

  22. Su J, Li Y, Yan X, Li R (2016) Fabrication of super-microporous nanocrystalline zirconia with high thermal stability. Chem Phys Lett 650:98–101. https://doi.org/10.1016/j.cplett.2016.03.003

  23. Lin C, Zhong M, Fan P, Long J, Gong D, Zhang H (2014) Picosecond laser fabrication of large-area surface micro-nano lotus-leaf structures and replication of superhydrophobic silicone rubber surfaces. Chin J Lasers 41(9):0903007. https://doi.org/10.3788/CJL201441.0903007

  24. Zhang L, Sun Y, Wang G, Li T (2020) Progress in Research and Application of Femtosecond Laser in Industry. Hot Working Technology v.49;No.536(10):27–31. https://doi.org/10.14158/j.cnki.1001.3814.20190729

  25. Küper S, Stuke M (1989) Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses. Appl Phys Lett 54(1):4–6. https://doi.org/10.1063/1.100831

  26. Küper S, Stuke M (1988) Ablation of UV-transparent materials with femtosecond UV excimer laser pulses. Microelectron Eng 129(1–4):475–480. https://doi.org/10.1557/PROC-129-375

  27. Davis KM, Miura K, Sugimoto N, Hirao K (1996) Writing waveguides in glass with a femtosecond laser. Optics letters 21(21):1729–1731. https://doi.org/10.1364/OL.21.001729

  28. Glezer E, Milosavljevic M, Huang L, Finlay R, Her T-H, Callan JP, Mazur E (1996) Three-dimensional optical storage inside transparent materials. Optics letters 21(24):2023–2025. https://doi.org/10.1364/OL.21.002023

  29. Watanabe W, Sowa S, Tamaki T, Itoh K, Nishii J (2006) Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser. Jpn J Appl Phys 45(29/32):L765-L767. https://doi.org/10.1143/JJAP.45.L765

  30. Hanada Y, Sugioka K, Midorikawa K (2010) UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing. Optics Express 18(2):446. https://doi.org/10.1364/OE.18.000446

  31. Kawata S, Sun H-B, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412(6848):697–698. https://doi.org/10.1038/35089130

  32. Rudd J, Korn G, Kane S, Squier J, Mourou GA, Bado P (1993) Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti: Al2O3 regenerative amplifier. Opt Lett 18(23):2044–2046. https://doi.org/10.1364/OL.18.002044

  33. Arai A, Bovatsek J, Yoshino F, Liu Z, Cho G, Shah L, Fermann M, Uehara Y (2006) Fiber chirped pulse amplification system for micromachining. Photonics North 2006. International Society for Optics and Photonics 63430S

  34. Kleinbauer J, Eckert D, Weiler S, Sutter D (2008) 80 W ultrafast CPA-free disk laser, Solid State Lasers XVII: Technology and Devices. International Society for Optics and Photonics 68711B

  35. Orazi L, Romoli L, Schmidt M, Li L (2021) Ultrafast laser manufacturing: from physics to industrial applications, CIRP Annals (prepublish). https://doi.org/10.1016/J.CIRP.2021.05.007

  36. Rethfeld B, Kaiser A, Vicanek M, Simon G (1999) Femtosecond laser-induced heating of electron gas in aluminium. Appl Phys A 69(1)S109-S112. https://doi.org/10.1007/s003399900228

  37. Nedialkov N, Imamova S, Atanasov P (2004) Ablation of metals by ultrashort laser pulses. J Phys D Appl Phys 37(4):638. https://doi.org/10.1088/0022-3727/37/4/016

  38. Ahmmed K, Colin G, Anne-Marie K (2014) Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining. Micromachines 5(4):1219–1253

    Article  Google Scholar 

  39. Von der Linde D, Sokolowski-Tinten K, Bialkowski J (1997) Laser–solid interaction in the femtosecond time regime. Appl Surf Sci 109:1–10. https://doi.org/10.1016/S0169-4332(96)00611-3

  40. Rethfeld B, Sokolowski-Tinten K, Von Der Linde D, Anisimov S (2004) Timescales in the response of materials to femtosecond laser excitation. Appl Phys A 79(4–6):767–769. https://doi.org/10.1007/s00339-004-2805-9

  41. **g J, Meng C, Bai Z, Chao Y, Gang L (2013) Influence of polarization on the hole formation with picosecond laser. Opt Rev 20(6):496–499. http://dx.doi.org/10.1007/s10043-013-0084-4

  42. Jandeleit J, Horn A, Weichenhain R, Kreutz EW, Poprawe R (1998) Fundamental investigations of micromachining by nano- and picosecond laser radiation. Appl Surf Sci 127–129:885–891. https://doi.org/10.1016/S0169-4332(97)00762-9

  43. Oehl CF, Breitling D, Jasper K, Radtke J, Dausinger F (2002) Precision drilling of metals and ceramics with short- and ultrashort-pulsed solid state lasers. Proc SPIE-Int Soc Opt Eng. https://doi.org/10.1117/12.456897

  44. Ostendorf A, Siegel F (2004) Micro-machining using high energy picosecond laser pulses a cause-effect consideration. https://doi.org/10.2351/1.5060348

  45. Hu W, Shin YC, King GB (2010) Micromachining of Metals, Alloys, and Ceramics by Picosecond Laser Ablation. J Manuf Sci Eng 132(1):165–174. https://doi.org/10.1115/1.4000836

  46. Liu X, Du D, Mourou G (1997) Laser ablation and micromachining with ultrashort laser pulses. IEEE J Quantum Electron 33(10):1706–1716. https://doi.org/10.1109/3.631270

  47. Ashcom JB (2003) The role of* focusing in the interaction of femtosecond laser pulses with transparent materials. Harvard University

  48. Mannion P, Magee J, Coyne E, O’connor G, Glynn T (2004) The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl Surf Sci 233(1–4):275–287. https://doi.org/10.1016/j.apsusc.2004.03.229

  49. Martynyuk M (1976) Mechanism for metal damage by intense electromagnetic radiation. Soviet Physics-Technical Physics 21(4):430–433

    Google Scholar 

  50. Lee C, Koumvakalis N, Bass M (1982) Spot‐size dependence of laser‐induced damage to diamond‐turned Cu mirrors. Appl Phys Lett 41(7):625–627. https://doi.org/10.1063/1.93629

  51. Anisimov S, Kapeliovich B, Perelman T (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Zh Eksp Teor Fiz 66(2):375–377

    Google Scholar 

  52. Jiang D, Long J, Han J, Cai M, Lin Y, Fan P, Zhang H, Zhong M (2017) Comprehensive enhancement of the mechanical and thermo-mechanical properties of W/Cu joints via femtosecond laser fabricated micro/nano interface structures. Mater Sci Eng A 696:429–436. https://doi.org/10.1016/j.msea.2017.04.063

  53. Wang L (2016) Method and Theoretical study of Metal Micromachining Based on Femtosecond Laser. Shandong University of Technology

  54. Payne MC, Teter MP, Allan DC, Arias T, Joannopoulos AJ (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64(4):1045. https://doi.org/10.1103/RevModPhys.64.1045

  55. Richert R, Angell C (1998) Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J Chem Phys 108(21):9016–9026. https://doi.org/10.1063/1.476348

  56. Wu H, Zhang N, He M, Shih C-Y, Zhu X (2016) Ar/Al atom interaction potential calculation and its application in molecular dynamics simulation of femtosecond laser ablation. Chin J Lasers 43(8):110–116. https://doi.org/10.3788/CJL201643.0802004

  57. Gan Y (2020) Coupling of material point method and molecular dynamics for modeling ultrafast laser interaction with metals. Engineering Analysis with Boundary Elements 110:104–111. https://doi.org/10.1016/j.enganabound.2019.10.012

  58. Li G (2018) Bionic Functional Structures by Femtosecond Laser Micro/nanofabrication Technologies. Springer 

  59. Wang Z, Wang C, Wang M, Zhao Q (2016) Manipulation of tribological properties of stainless steel by picosecond laser texturing and quenching. Tribology international 99:14–22. https://doi.org/10.1016/j.triboint.2016.03.002

  60. Lu Y (2016) The study of femtosecond laser ablation and electrochemical deposition on metal surface through mask effect. Bei**g Institute of Technology

  61. Zhang W, Cheng G, Feng Q (2012) Unclassical ripple patterns in single-crystal silicon produced by femtosecond laser irradiation. Appl Surf Sci 263:436–439. https://doi.org/10.1016/j.apsusc.2012.09.075

  62. Qin X, Huang T, **ao R (2019) Periodic microstructure on Ti surface induced by high power green femtosecond laser. Chin J Lasers 46(10):138–146. https://doi.org/10.3788/CJL201946.1002006

  63. Liu B, Wang W, Jiang G, Mei X, Wang Z, Wang K, Cui J (2016) Study on hierarchical structured PDMS for surface super-hydrophobicity using imprinting with ultrafast laser structured models. Appl Surf Sci 364:528–538. https://doi.org/10.1016/j.apsusc.2015.12.190

  64. Jiang G, Pan R, Chen C, Hu X, Zhang H, Zhong M (2020) Ultrafast Laser Fabrication of Drag Reduction Micro-nano Structures and Their Corrosion Resistance. Chin J Lasers (8):73–81. https://doi.org/10.3788/CJL202047.0802005

  65. Yang Q, Deng B, Wang Y, **ao C, Wang X, Chen L, Zheng Z, Lou D, Tao Q, Zhai Z (2017) Superhydrophobic surface of Aluminium Induced by Femtosecond Laser, Laser & Optoelectronics Progress (10):314–320. https://doi.org/10.3788/LOP54.101408

  66. Nayak BK, Gupta MC (2010) Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation. Opt Lasers Eng 48(10):940–949. https://doi.org/10.1016/j.optlaseng.2010.04.010

  67. Ahmmed KMT, Ling EJY, Servio P, Kietzig AM (2015) Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper. Opt Lasers Eng 66:258–268. https://doi.org/10.1016/j.optlaseng.2014.09.017

  68. Richerzhagen B, Kutsuna M, Okada H, Ikeda T (2003) Water jet-guided laser processing. Proc SPIE-Int Soc Opt Eng 4830. https://doi.org/10.1117/12.486514

  69. Shi Y, Jiang Z, Cao J, Ehmann KF (2020) Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining. Appl Surf Sci 500:144286. https://doi.org/10.1016/j.apsusc.2019.144286

  70. Fan P, Zhong M, Li L, Huang T, Zhang H (2013) Rapid fabrication of surface micro/nano structures with enhanced broadband absorption on Cu by picosecond laser. Opt Express 21(10):11628–11637. https://doi.org/10.1364/OE.21.011628

  71. Tang G, Hourd AC, Abdolvand A (2012) Nanosecond pulsed laser blackening of copper. Appl Phys Lett 101(23):231902. https://doi.org/10.1063/1.4769215

  72. Vorobyev A, Guo C (2008) Femtosecond laser blackening of platinum. J Appl Phys 104(5):053516. https://doi.org/10.1063/1.2975989

  73. Vorobyev AY, Guo C (2008) Colorizing metals with femtosecond laser pulses. Appl Phys Lett 92(4):041914. https://doi.org/10.1063/1.2834902

  74. Vorobyev A, Topkov A, Gurin O, Svich V, Guo C (2009) Enhanced absorption of metals over ultrabroad electromagnetic spectrum. Appl Phys Lett 95(12):121106. https://doi.org/10.1063/1.3227668

  75. Vorobyev AY, Guo C (2010) Metallic light absorbers produced by femtosecond laser pulses. Adv Mech Eng 2:452749. https://doi.org/10.1155/2010/452749

  76. Yang Y, Yang J, Liang C, Wang H (2008) Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses. Opt express 16(15):11259–11265. https://doi.org/10.1364/OE.16.011259

  77. Huang M, Zhao F, Cheng Y, Xu N, Xu Z (2010) The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass. Opt Express 18(104):A600-A619. https://doi.org/10.1364/OE.18.00A600

  78. Vorobyev A, Guo C (2006) Femtosecond laser nanostructuring of metals. Opt Express 14(6):2164–2169. https://doi.org/10.1364/OE.14.002164

  79. Koch J, Korte F, Bauer T, Fallnich C, Ostendorf A, Chichkov BN (2005) Nanotexturing of gold films by femtosecond laser-induced melt dynamics. Appl Phys A 81(2)325–328. https://doi.org/10.1007/s00339-005-3212-6

  80. Birnbaum M (1965) Semiconductor Surface Damage Produced by Ruby Lasers. J Appl Phys 36(11):3688–3689. https://doi.org/10.1063/1.1703071

  81. Vorobyev AY, Guo C (2013) Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev 7(3):385–407. https://doi.org/10.1002/lpor.201200017

  82. Bonse J, Krueger J, Rosenfeld A (2009) On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J Appl Phys 106(10):3688. https://doi.org/10.1063/1.3261734

  83. Lazzini G, Romoli L, Tantussi F, Fuso F (2018) Nanostructure patterns on stainless-steel upon ultrafast laser ablation with circular polarization. Opt Laser Technol 107:435–442. https://doi.org/10.1016/j.optlastec.2018.06.023

  84. Bonse J, KrueGer J, HoeHm S, Rosenfeld A (2012) Femtosecond laser-induced periodic surface structures. J Laser Appl 24(4):042006. https://doi.org/10.2351/1.4712658

  85. Zhang Y, Zou G, Liu L, Zhao Y, Liang Q, Wu A, Zhou YN (2016) Time-dependent wettability of nano-patterned surfaces fabricated by femtosecond laser with high efficiency. Appl Surf Sci 389:554–559. https://doi.org/10.1016/j.apsusc.2016.07.089

  86. Bizi-bandoki P, Valette S, Audouard E, Benayoun S (2013) Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations. Appl Surf Sci 273:399–407. https://doi.org/10.1016/j.apsusc.2013.02.054

  87. Kietzig AM, Hatzikiriakos SG, Englezos P (2009) Patterned superhydrophobic metallic surfaces, Langmuir the Acs. Journal of Surfaces & Colloids 25(8):4821–7. https://doi.org/10.1021/la8037582

  88. Li G (2018) Micropore-Arrayed Ultrathin Aluminum Foil for Oil/Water Separation and Particle Filtration, Bionic Functional Structures by Femtosecond Laser Micro/nanofabrication Technologies. Springer Theses (Recognizing Outstanding Ph.D. Research). Springer, Singapore. https://doi.org/10.1007/978-981-13-0359-3_8

  89. Liu Z, Yang J, Li Y, Li W, Chen J, Shen L, Zhang P, Yu Z (2020) Wetting and spreading behaviors of Al-Si alloy on surface textured stainless steel by ultrafast laser. Appl Surf Sci 46316. https://doi.org/10.1016/j.apsusc.2020.146316

  90. Pan H, Wang Z, Fan W, Wang C, LI H, Bai F, Qian J, Zhao Q (2016) Superhydrophobic Titanium Surface Micro/nanostructures Induced by Femtosecond Laser. Chin J Lasers 43(008):95–101. https://doi.org/10.3788/CJL201643.0802002

  91. Xu C (2009) Design and Preparation of Nanoporous Metals and their Catalytic Performance. Journal of Shandong University

  92. Li Y, Zhou X, Qi W, **e H, Yin K, Tong Y, He J, Gong S, Li Z (2020) Ultrafast fabrication of Cu oxide micro/nano-structures via laser ablation to promote oxygen evolution reaction. Chem Eng J 383:123086. https://doi.org/10.1016/j.cej.2019.123086

  93. Wang X, Xu B, Chen Y, Ma C, Huang Y (2019) Fabrication of micro/nano-hierarchical structures for droplet manipulation via velocity-controlled picosecond laser surface texturing. Opt Lasers Eng 122:319–327. https://doi.org/10.1016/j.optlaseng.2019.06.021

  94. Cunha A, Serro AP, Oliveira V, Almeida A, Vilar R, Durrieu M-C (2013) Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces. Appl Surf Sci 265:688–696. https://doi.org/10.1016/j.apsusc.2012.11.085

  95. Chen Z, Chang T, Liu C, Hsiao W, Huang C (2020) Picosecond laser surface modification of aluminum oxide with fish-scale structures for cell culture. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.04.067

  96. Pan R, Zhang H, Zhong M (2020) Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication. ACS Appl Mater Interfaces 13(1):1743–1753. https://doi.org/10.1021/acsami.0c16259

  97. Yang J, Oliveira JP, Li Y, Tan C, Gao CK, Zhao YX, Yu ZS (2022) Dissimilar laser techniques for joining of aluminum alloys to steels: A critical review. J Mater Process Technol 301:117443. https://doi.org/10.1016/j.jmatprotec.2021.117443

    Article  Google Scholar 

  98. Zuhlke CA, Anderson TP, Alexander DR (2013) Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses. Opt Express 21(7):8460–8473. https://doi.org/10.1364/oe.21.008460

  99. Czyz K, Marczak J, Major R, Mzyk A, Rycyk A, Sarzynski A, Strzelec M (2016) Selected laser methods for surface structuring of biocompatible diamond-like carbon layers. Diamond Relat Mater 67:26–40. https://doi.org/10.1016/j.diamond.2016.01.013

  100. Ahmmed KMT, Grambow C, Kietzig AM (2014) Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining. Micromachines 5(4):1219–1253. https://doi.org/10.3390/mi5041219

  101. McDaniel C, Gladkovskaya O, Flanagan A, Rochev Y, O'Connor GM (2015) In vitro study on the response of RAW264.7 and MS-5 fibroblast cells on laser-induced periodic surface structures for stainless steel alloys. Rsc Advances 5(53):42548–42558. https://doi.org/10.1039/c5ra04342e

  102. Rusen L, Cazan M, Mustaciosu C, Filipescu M, Simion S, Zamfirescu M, Dinca V, Dinescu M (2014) Tailored topography control of biopolymer surfaces by ultrafast lasers for cell-substrate studies. Appl Surf Sci 302:256–261. https://doi.org/10.1016/j.apsusc.2013.10.023

  103. Erdogan M, Oktem B, Kalaycioglu H, Yavas S, Mukhopadhyay PK, Eken K, Ozgoren K, Aykac Y, Tazebay UH, Ilday OH (2011) Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers. Opt Express 19(11):10986–10996. https://doi.org/10.1364/oe.19.010986

  104. Dumas V, Guignandon A, Vico L, Mauclair C, Zapata X, Linossier MT, Bouleftour W, Granier J, Peyroche S, Dumas J-C, Zahouani H, Rattner A (2015) Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomed Mater 10(5). https://doi.org/10.1088/1748-6041/10/5/055002

  105. Cunha A, Zouani OF, Plawinski L, Botelho do Rego AM, Almeida A, Vilar R, Durrieu M-C (2015) Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces. Nanomedicine 10(5):725–739. https://doi.org/10.2217/nnm.15.19

  106. Oberringer M, Akman E, Lee J, Metzger W, Akkan CK, Kacar E, Demir A, Abdul-Khaliq H, Puetz N, Wennemuth G, Pohlemann T, Veith M, Aktas C (2013) Reduced myofibroblast differentiation on femtosecond laser treated 316LS stainless steel. Mater Sci Eng C 33(2):901–908. https://doi.org/10.1016/j.msec.2012.11.018

  107. Cheng CW, Chen JK (2016) Femtosecond laser sintering of copper nanoparticles. Appl Phys A 122(4pt.1):1–8. https://doi.org/10.1007/s00339-016-9814-3

  108. Wang C (2016) First-principles calculations and their validations for ultrafast micro/nanofabrication based on electron dynamics control. J Mech Eng 000(002):76–76. https://doi.org/10.3969/j.issn.1674-1641.2016.02.030

Download references

Funding

Financial support of the National Natural Science Foundation of China (51805315) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

** Yang: Conceptualization, Methodology, Writing-review & editing. Zongjie Chen: Writing-original draft, Data curation, Investigation. Hongbing Liu: Visualization, Software. Yixuan Zhao: Validation. Rui Pan: Writing-review & editing.

Corresponding authors

Correspondence to ** Yang or Rui Pan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Yang, J., Liu, H. et al. A short review on functionalized metallic surfaces by ultrafast laser micromachining. Int J Adv Manuf Technol 119, 6919–6948 (2022). https://doi.org/10.1007/s00170-021-08560-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08560-8

Keywords

Navigation