Log in

Microbiological corrosion: mechanism, control and impact—a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This article reports a review of microbiological corrosion. It addresses the general perspectives of the various bacteria involved in the biocorrosion, and these include sulphate-reducing bacteria, slime-forming bacteria, iron-oxidizing bacteria and sulphur bacteria. The review also reported on biofilms and effects, various sulphate-reducing bacteria mechanisms, the biodeterioration control methods, environment, fouling and the impact of microbiological corrosion. Microbial corrosion, as it affects stainless steel, mildsteel, aluminium alloy, the AL6XN (N083677) super austenitic stainless steel, and manufacturing and transportation, were reviewed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Microbiologically Influenced Corrosion (MIC) WebCorr Cons. Serv, http://www.corrosionclinic.com/types_of_corrosion/microbiologically_influenced_biological_microbial_corrosion.htm. Retrieved: 28 12. 2016

  2. Microbial Corrosion https://en.wiki2.org/wiki/Microbial_corrosion. Retrieved: 15–01-2017

  3. Iwona B, Alain B, Alfonso M, Hans-Curt F, Vittoria S, Wolfgang S (2000), Microbially influenced corrosion of industrial materials—biocorrosion network (Brite-Euram III Thematic Network N° ERB BRRT-CT98–5084

  4. Iwona BB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opini Biotech 15:181–186

    Article  Google Scholar 

  5. Hamilton W (1985) Sulphate-reducing bacteria and anaerobic corrosion. Annual Rev Microbiolo 39(1):195–217

    Article  Google Scholar 

  6. Lee W et al (1995) Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8(3):165–194

    Article  Google Scholar 

  7. King RA, Miller JDA (1971) Corrosion by sulphate-reducing bacteria. Nature 233:491–492

    Article  Google Scholar 

  8. King RA, Miller JDA, Smith JS (1973) Corrosion of mild steel by iron sulphides. Brit Corrosion J 8:137–142

    Article  Google Scholar 

  9. Videla HA, Edyvean G, Herrera LK (2005). An updated overview of SRB induced corrosion and protection of carbon steel. Corrosion, 2005

  10. TPC-3 (1990) Microbiologically influenced corrosion and biofouling in oilfield equipment. NACE, Houston

    Google Scholar 

  11. Postgate JR (1984) The sulphate-reducing bacteria, 2nd ed. Cambridge Press, London

    Google Scholar 

  12. Whonchee L, Zbigniew L, Nielsen PH, Hamilton WA (1995) Role of sulphate-reducing bacteria in corrosion of mild steel: a review. Biofouling- The Journal of Bioadhesion and Biofilm Research 8(3):165–194. doi:10.1080/0892 70195 09 3 78271

    Article  Google Scholar 

  13. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    Google Scholar 

  14. Frobisher M (1965) Fundamentals of microbiology. W.B. Saunders Company, Philadelphia, p 512

    Google Scholar 

  15. Respiration, bacteria and industrial systems. Retrieved from https://en.wikipedia.org/w/index.php?title=Biofilm&oldid=756393899”– 23-12-2016

  16. Little B, Wagner P, Mansfeld F (1991) Microbiologically influenced corrosion of metals and alloys. Int Matls Reviews 36(1):253–272

    Article  Google Scholar 

  17. Materials Centre, Sandvik Materials Technology, Microbiologically influenced corrosion of stainless steels—http://smt.sandvik.com/ en/materials-center/corrosion/wet-corrosion/microbiologically-influenced-corrosion-mic/ - Retrieved: 14–01-2017

  18. Yang SS, Lin JY, Lin YT (1998) Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system. J Microbiol Immunol Infect 31(3):151–164

    Google Scholar 

  19. H&C Heat transfer solutions: http://www.hcheattransfer.com/fouling_factors.html Retrieved: 02–02-2017

  20. Lee W, Characklis WG (1993) Corrosion of mild steel under anaerobic biofilm. Corrosion 49(3):186–199. doi:10.5006/1.3316040

    Article  Google Scholar 

  21. Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F (2012) “Terminology for biorelated polymers and applications (IUPAC Recommendations)” (PDF). P Appl Chem 84(2):377–410. doi:10.1351/PAC-REC-10-12-04

    Google Scholar 

  22. Microbial corrosion - https://microbewiki.kenyon.edu/index.php/Microbial_corrosion. Retrieved: 27–12-2016

  23. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108. doi:10.1038/nrmicro821

    Article  Google Scholar 

  24. Lear G, Lewis GD (eds) (2012) Microbial biofilms: Curr Res and Applica. Caister Academic Press, UK

    Google Scholar 

  25. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi:10.1038/nrmicro2415

    Google Scholar 

  26. Characklis WG, Little BJ, Stoodley P, Mccaughey MS (1991) Microbial fouling and corrosion in nuclear power plant service water systems, Corrosion 91

  27. Tiller AK (1983) “Is Stainless Steel Susceptibility to Microbial Corrosion?” National Corrosion Service, March 8–10

  28. Lee AK, Newman DK (2003) Microbal iron respiration: impacts on corrosion processes. Appl Microbiol Biotechnol 62:134. doi:10.1007/s00253-003-1314-7

    Article  Google Scholar 

  29. Little B, Ray R (2002) A perspective on corrosion inhibition by biofilms. Corrosion 58(5):424–428. doi:10.5006/1.3277632

    Article  Google Scholar 

  30. Gadd G (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology. doi:10.1099/mic.0.037143-0

  31. Beech I, Sunner J, Hiraoka K (2005) “Microbe–surface interactions in biofouling and biocorrosion processes.” Int Microbiol

  32. Lovely D, Coates J, Blunt-Harris E, Phillips E, Woodward J (1996) Humic substances as electron acceptors for microbial respiration. Nature. doi:10.1038/382445a0

  33. Briandet R, Herry JM, Bellon-Fontaine MN (2001) Determination of the van der Waals, electron donor and electron acceptor surface tension components of static gram-positive microbial biofilms. Collo Surf B: Biointerf 21(4):299–310

    Article  Google Scholar 

  34. Takahashi H, Suda T, Tanaka Y, Kimura B (2010) Cellular hydrophobicity of Listeria monocytogenes involves initial attachment and biofilm formation on the surface of polyvinyl chloride. Appl Microbio 50(6):618–625

    Article  Google Scholar 

  35. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    Article  Google Scholar 

  36. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138. doi:10.1016/S0140-6736(01)05321-1.

    Article  Google Scholar 

  37. Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opini Biotech 14(3):255–261. doi:10.1016/S0958-1669(03)00036-3

    Article  Google Scholar 

  38. Jakubovics NS, Shields RC, Rajarajan N, Burgess JG (2013) Lett Appl Microbiol 57(6):467–475. doi:10.1111/lam.12134.

    Article  Google Scholar 

  39. Biofilm- “https://en.wikipedia.org/w/index.php?title=Biofilm&oldid=756393899”. Retrieved: 10–01- 2017

  40. Liang S, Squier T, Zachara J, Fredrickson J (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem C-type cytochromes. Mol Microbiol. doi:10.1111/j.1365-2958.2007.05783.x

  41. Willey J, Sherwood L, Woolverton C (2011) Prescott’s microbiology, 8th edn. McGraw-Hill, New York, pp 534–535

    Google Scholar 

  42. CTL - Corrosion of Iron Pi** in a Fire Sprinkler System. Corrosion Testing Laboratories (2007). www.corrosionlab.com/Failure.../30010.corrosion-bad-fitting.iron-sprinkler.htm

  43. Iverson W (1987) Microbial corrosion of metals. Adv in Appl Microbiol. doi:10.1016/S0065-2164(08)70077-7

  44. Nuhoglu Y (2004) “The biodeteriorative of microorganisms and the effects on stone monuments under air pollution and continental-cold climatic condition in Erzurum, Turkey.” Fresenius Environ Bull

  45. Kakooei S, Ismail MC, Ariwahjoedi B (2012) Mechanism of microbiologically influenced corrosion—a review. World Appl Sci J 17(4):524–531

    Google Scholar 

  46. Kuhr VW, der Vlugt V (1934) De grafteering van geitizer als electrobiochemisch process in anaerobe groden. Water, Den Haag 18(16):147–165

    Google Scholar 

  47. Castaneda H, Benetton XD (2008) SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corros Sci 50(4):1169–1183

    Article  Google Scholar 

  48. Costello JA (1974) Cathodic depolarization by sulphate reducing bacteria. South Afric J Sci 70(7):202–204

    Google Scholar 

  49. Obuekwe C, Westlake D, Plambeck J (1981) Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil. II.—mechanism of anodic depolarization. Corrosion 37(11):632–637

    Article  Google Scholar 

  50. Crolet J (1992) Biocorrosion: pH regulation by sulphate-reduction bacteria. Mater Tech (Paris) 80(9–10):71–77

    Article  Google Scholar 

  51. Araujo-Jorge TC, CML C, LEV A (1992) Sulphate-reducing bacteria associated with biocorrosion: a review. Mem Inst Oswaldo Cruz 87(3):329–337

    Article  Google Scholar 

  52. Ford T, Mitchell R (1990) The ecology and microbial corrosion. Adv Microb Ecol 11:231–262

    Article  Google Scholar 

  53. Coetser S, Cloete T (2005) Biofouling and biocorrosion in industrial water systems. Crit Rev in Microbiol 31(4):213–232

    Article  Google Scholar 

  54. Miller JDA (1970) Microbial aspects of metallurgy. Elsevier Publishing Co. Inc, New York

    Google Scholar 

  55. Inverson WP (2001) Research on the mechanisms of anaerobic corrosion. Int Biodeter & Biodegrad 47(2):63–70. doi:10.1016/S0964-8305(00)00111-6

    Article  Google Scholar 

  56. Wolfram JH, Mizia RE, Jex R, Nelson L, Garcia KM (1996) The impact of microbially influenced corrosion on spent nuclear fuel and storage life, INEL-96;0335--- Idaho National Engineering Laboratory. Lockheed Martin Idaho Technologies Company, USA

    Google Scholar 

  57. Pope DH, Duquette DJ, Johannes AH, Wayner PC (1984), “Microbiologically influenced corrosion of industrial alloys∼‘MatL Perform

  58. Microbiological corrosion - http://www2.mtec.or.th/th/research/famd/corro/mic.htm Retrieved: 28–12-2016

  59. Gua J-D (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International Biodeterioration & Biodegradation 52:69–91

    Article  Google Scholar 

  60. Loto CA, Ives MB (1994) Corrosion resistance of super austenitic stainless steels in sea water. Nigerian Society of Engineers Technical Trans Vol 29(1):1–9

    Google Scholar 

  61. Microbiologically Influenced Corrosion in Industrial Systems https://microbewiki.kenyon.edu/index.php/Microbiologically_Influenced_Corrosion_in_Industrial_Systems Retrirved: 15–01-2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Loto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loto, C.A. Microbiological corrosion: mechanism, control and impact—a review. Int J Adv Manuf Technol 92, 4241–4252 (2017). https://doi.org/10.1007/s00170-017-0494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0494-8

Keywords

Navigation