Log in

Optimal structural design of a Biglide parallel drill grinder

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper deals with the optimal structural design of a Biglide parallel grinder for drill grinding. A pair of spatial modules is adopted to replace the conventional parallelogram to enhance the out-of-plane stiffness of the latter. A multi-objective design optimization problem is formulated, of which the stiffness, motion/force transmission, and work space are taken into consideration. The Pareto front of the optimization problem is obtained to provide the optimum design of the Biglide machine, and a scatter matrix is visualized to reveal the influence of the link dimensions to the performance. The selected design from the Pareto front guarantees the requirement on the elastostatic performance in the grinding process with increased dexterous workspace size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan L, Jiang F (2013) A practical optimization design of helical geometry drill point and its grinding process. Int J Adv Manuf Technol 64(9–12):1387–1394

    Article  Google Scholar 

  2. Zou P (2003) Kinematic analysis of a Biglide parallel grinder. J Mater Process Technol 138(1–3):461–463

    Article  Google Scholar 

  3. Li B, Hu Y, Wang H (2007) Analysis and simulation for a parallel drill point grinder, part 2: grinding kinematic modeling and simulation. Int J Adv Manuf Technol 31(9–10):915–925

    Article  Google Scholar 

  4. Zou P, Yang XL, Ai MZ (2010) Study on helical drill point grinding with a Biglide parallel grinder. Adv Mater Res 97:2119–2122

    Article  Google Scholar 

  5. Wu G, Zou P (2016) Stiffness analysis and comparison of a Biglide parallel grinder with alternative spatial modular parallelograms. Robotica FirstView:1–17

    Article  Google Scholar 

  6. Wenger P, Chablat D (2000) Kinematic analysis of a new parallel machine tool: the Orthoglide. In: Advances in robot kinematics. Springer, pp 305–314

  7. Stamper RE, Tsai L-W, Walsh GC (1997) Optimization of a three DOF translational platform for well-conditioned workspace. In: IEEE international conference on robotics and automation, vol 4. IEEE, pp 3250–3255

  8. Merlet J-P (2006) Jacobian, manipulability, condition number, and accuracy of parallel robots. J Mech Des 128(1):199–206

    Article  Google Scholar 

  9. Huang T, Zhao X, Whitehouse DJ (2002) Stiffness estimation of a tripod-based parallel kinematic machine. IEEE Trans Robot Autom 18(1):50–58

    Article  Google Scholar 

  10. Hay AM, Snyman JA (2004) Methodologies for the optimal design of parallel manipulators. Int J Numer Methods Eng 59(1):131– 152

    Article  MathSciNet  MATH  Google Scholar 

  11. Chablat D, Caro S, Ur-Rehman R, Wenger P (2010) Comparison of planar parallel manipulator architectures based on a multi-objective design optimization approach. In: ASME 2010 international design engineering technical conferences and computers and information in engineering conference. Montreal , pp 861–870

  12. Stock M, Miller K (2003) Optimal kinematic design of spatial parallel manipulators: application to linear Delta robot. J Mech Des 125(2):292–301

    Article  Google Scholar 

  13. Hao F, Merlet J-P (2005) Multi-criteria optimal design of parallel manipulators based on interval analysis. Mech Mach Theory 40(2):157–171

    Article  MATH  Google Scholar 

  14. Krefft M, Hesselbach J (2005) Elastodynamic optimization of parallel kinematics. In: IEEE international conference on automation science and engineering, pp 357–362

  15. Altuzarra O, Hernandez A, Salgado O, Angeles J (2009) Multiobjective optimum design of a symmetric parallel Schönflies-motion generator. J Mech Des 131(3):031002

    Article  Google Scholar 

  16. Ur-Rehman R, Caro S, Chablat D, Wenger P (2010) Multi-objective path placement optimization of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: application to the orthoglide. Mech Mach Theory 45(8):1125–1141

    Article  MATH  Google Scholar 

  17. Wu G, Caro S, Bai S, Kepler J (2014) Dynamic modeling and design optimization of a 3-DOF spherical parallel manipulator. Robot Auton Syst 62(10):1377–1386

    Article  Google Scholar 

  18. Huo D, Cheng K, Wardle F (2010) Design of a five-axis ultra-precision micro-milling machine–UltraMill. part 1: holistic design approach, design considerations and specifications. Int J Adv Manuf Technol 47(9):867–877

    Article  Google Scholar 

  19. Huo D, Cheng K, Wardle F (2010) Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: integrated dynamic modelling, design optimisation and analysis. Int J Adv Manuf Technol 47(9):879–890

    Article  Google Scholar 

  20. Germain C, Caro S, Briot S, Wenger P (2013) Singularity-free design of the translational parallel manipulator IRSBot-2. Mech Mach Theory 64:262–285

    Article  Google Scholar 

  21. Gosselin C (1990) Stiffness map** for parallel manipulators. IEEE Trans Robot Autom 6(3):377–382

    Article  Google Scholar 

  22. Chen S-F, Kao I (2000) Conservative congruence transformation for joint and cartesian stiffness matrices of robotic hands and fingers. Int J Robot Res 19:835–847

    Article  Google Scholar 

  23. Alici G, Shirinzadeh B (2005) Enhanced stiffness modeling, identification and characterization for robot manipulators. IEEE Trans Robot 21(4):554–564

    Article  MATH  Google Scholar 

  24. Majou F, Gosselin C, Wenger P, Chablat D (2007) Parametric stiffness analysis of the Orthoglide. Mech Mach Theory 42 (3):296–311

    Article  MATH  Google Scholar 

  25. Pashkevich A, Chablat D, Wenger P (2009) Stiffness analysis of overconstrained parallel manipulators. Mech Mach Theory 44(5):966–982

    Article  MATH  Google Scholar 

  26. Nagai K, Liu Z (2008) A systematic approach to stiffness analysis of parallel mechanisms. In: IEEE international conference on robotics and automation, pp 1543–1548

  27. Klimchik A, Furet B, Caro S, Pashkevich A (2015) Identification of the manipulator stiffness model parameters in industrial environment. Mech Mach Theory 90:1–22

    Article  Google Scholar 

  28. Wu G, Bai S, Kepler J (2014) Mobile platform center shift in spherical parallel manipulators with flexible limbs. Mech Mach Theory 75:12–26

    Article  Google Scholar 

  29. Wang D, Fan R, Chen W (2013) Stiffness analysis of a hexaglide parallel loading mechanism. Mech Mach Theory 70:454– 473

    Article  Google Scholar 

  30. Shigley JE, Mischke CR, Brown TH (2004) Standard handbook of machine design. McGraw-Hill

  31. Angeles J (2010) On the nature of the Cartesian stiffness matrix. Ingeniería Mecánica 3(5):163–170

    Google Scholar 

  32. Roberts RG (2002) On the normal form of a spatial stiffness matrix. In: Proceedings of IEEE international conference on robotics and automation, vol 1, pp 556–561

  33. Angeles J (2007) Fundamentals of robotic mechanical systems: theory, methods, and algorithms. Springer, New York

    Book  MATH  Google Scholar 

  34. Strang G (2005) Linear algebra and its applications, 4th edn. Cengage Learning

  35. Tao DC (1964) Applied linkage synthesis. Addison-Wesley, Reading

  36. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  37. Paul A, Kapoor SG, DeVor RE (2005) Chisel edge and cutting lip shape optimization for improved twist drill point design. Int J Mach Tools Manuf 45(4):421–431

    Article  Google Scholar 

Download references

Acknowledgments

The work is partially supported by the Fundamental Research Funds for the Central Universities. The support from Aalborg University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G. Optimal structural design of a Biglide parallel drill grinder. Int J Adv Manuf Technol 90, 2979–2990 (2017). https://doi.org/10.1007/s00170-016-9625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9625-x

Keywords

Navigation