Log in

Impact of pressure of surrounding medium on plain water jet cutting of rocks

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The goal of this contribution is to investigate problems connected with the application of plain water jets in surroundings between jet outlet and target differing from standard atmosphere. Two cases are especially interesting from the practical viewpoint. Application of water jets under the water level, i.e., in pressurized water: it is sometimes necessary to perform certain reparations on dam walls, bridge pillars, and other structures under the water level without emptying the dam or changing the river flow. The second case particularly involves water jets used for cleaning of chemical or radioactive facilities, which is much safer if done in underpressure. By these reasons, behavior of plain water jets on several different rock materials was tested inside the pressure vessel with the application of normal air pressure, air underpressure, and water overpressure. The effectiveness of rock material disintegration by water jet in various environmental conditions has been described. The depth of penetration decreases with increasing water overpressure, approximately with the second degree of the overpressure value. The cut depth decreases with the increasing value of certain material characteristics. The cut depth decreases also with decreasing pressure of air between nozzle outlet and sample surface. The dependence seems to be linear within the experimental range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leach SJ, Walker GL (1966) Some aspects of rock cutting by high speed water jets. Philos T R Soc A 260:295–310

    Article  Google Scholar 

  2. Crow SC (1973) A theory of hydraulic rock cutting. Int J Rock Mech Min Sci 10:567–584

    Article  Google Scholar 

  3. Rehbinder GA (1980) Theory about cutting rock with water jet. Rock Mech 12:247–257

    Article  Google Scholar 

  4. Hlaváč L (1992) Physical description of high energy liquid jet interaction with material. In: Rakowski Z (ed) Geomechanics 91. Balkema, Rotterdam, pp. 341–346

    Google Scholar 

  5. Yanaida K (1974) Flow characteristics of water jets. In: Proceedings of the 2nd International Symposium on Jet Cutting Technology, Cambridge, A2: pp 19–32

  6. Hlaváč LM, Bodnárová L, Janurová E, Sitek L (2012) Comparison of continuous and pulsing water jets for repair actions on road and bridge concrete. Balt J Road Bridge Eng 7:53–59

    Article  Google Scholar 

  7. Wilhelm F, Holtkamp A, Darman J, Hanschke R, Duncker G, Pein A (1997) Potential of the waterjet in cataract surgery. Ophthalmologe 95(10):721–724

    Article  Google Scholar 

  8. Wilhelm F, Holtkamp A, Duncker GIW, Darman J, Knorrn M (2002) Phacoemulsification of the human lens with a waterjet. Ophthalmologe 99(4):286–288

    Article  Google Scholar 

  9. Tafreshi HV, Pourdeyhimi B (2003) The effects of nozzle geometry on waterjet breakup at high Reynolds numbers. Exp Fluids 35(4):364–371

    Article  Google Scholar 

  10. Hlaváč LM, Kaličinský J, Hlaváčová IM, Mádr V (2006) Testing of induced frequencies during submerged use of water jets. In: Longman P (ed) Water Jetting. BHR Group, United Kingdom, pp. 383–386

    Google Scholar 

  11. Yang FC, Shiah SW, Heh TY (2009) The effect of orifice lead cutting edge distance and fluid viscosity on jet performance in high-velocity waterjet cutting systems. Int J Adv Manuf Technol 40(3–4):332–341

    Article  Google Scholar 

  12. Lopatnikov SL, Gillespie JW, Morand C, Lumpkin R, Dignam J (2012) The new test method for high velocity water jet impact. Exp Mech 52:1475–1481

    Article  Google Scholar 

  13. Moyo D, Anandjiwala RD (2013) Studies on waterjet impact forces in the hydroentanglement process. Text Res J 83:1717–1727

    Article  Google Scholar 

  14. Momber AW (2000) Concrete failure due to air-water jet im**ement. J Mater Sci 35(11):2785–2789

    Article  Google Scholar 

  15. Hlaváč LM, Bodnárová L, Mádr V, Hela R, Kaličinský J, Janurová E, Pustelník J, Hlaváčová IM (2010) Testing of the high-velocity water jetting on concrete samples inside the overpressure vessel. In: Proceedings of the ASME Pressure Vessels and Pi** Conference 2009 Vol 5:101–106

    Google Scholar 

  16. Sitek L., Bodnárová L, Válek J, Zeleňák M, Klich J, Foldyna J, Novotný M (2013) Effects of water jet on heat-affected concretes. In:Juozapaitis A, Vainiunas P, Zavadskas EK (eds) Modern Building Materials, Structures and Techniques, Book Series: Procedia Engineering 57, pp 1036–1044.

  17. Hlaváč LM, Hlaváčová IM, Kušnerová M, Mádr V (2001) Research of waterjet interaction with submerged rock materials. In: Hashish M (Ed.), Proceedings of the 2001 WJTA American Waterjet Conference, Minneapolis, WJTA, St. Louis, pp 617–624

  18. Bollaert EFR, Schleiss AJ (2005) Physically based model for evaluation of rock scour due to high-velocity jet impact. J Hydraul Eng–ASCE 131:153–165

    Article  Google Scholar 

  19. Yuzhou L, Tingkan L (2007) Application of water jet assisted drilling and slotting technology in top coal softening and gas drainage. In: **g G, Gao J, Zhou A, Gou P (Eds.), International Symposium on Mining Science and Safety Technology-Progress in Mining Science and Safety Technology, Jiaozuo, pp 1448–1452

  20. Linhua Z, Yuzhou L (2007) The study of the mechanisms of high pressure water jet assisted drilling for gas drainage. In: **g G, Gao J, Zhou A, Gou P (Eds.), International Symposium on Mining Science and Safety Technology-Progress in Mining Science and Safety Technology, Jiaozuo, pp 1469–1474

  21. Ozcelik Y, Ciccu R, Bortolussi A (2013) Effect of working parameters on excavation rate and specific energy on surface treatment with pure water jet. J Test Eval 41:104–115

    Google Scholar 

  22. Colosimo BM, Monno M, Semeraro Q (2000) Process parameters control in water jet peening. Int J Mater Prod Technol 15(1–2):10–19

    Article  Google Scholar 

  23. Chillman A, Ramulu M, Hashish M (2010) Waterjet and water-air jet surface processing of a titanium alloy: a parametric evaluation. J Manuf Sci E-T ASME 132(1) Article Number: 011012

  24. Huang L, Folkes J, Kinnell P, Shipway PH (2012) Mechanisms of damage initiation in a titanium alloy subjected to water droplet impact during ultra-high pressure plain waterjet erosion. J Mater Process Technol 212(9):1906–1915

    Article  Google Scholar 

  25. Vijay MM (1998) Design and development of a prototype pulsed waterjet machine for the removal of hard coatings. In: Louis H (ed) Proceedings of the 14th International Conference on Jetting Technology, Brugge. Prof. Eng. Pub. Ltd., Bury St Edmunds & London, pp. 39–57

    Google Scholar 

  26. Hlaváč LM, Kušnerová M, Mádr V, Hlaváčová IM (2004) Testing of self-resonating chambers-experimental results. In: Gee C (ed) Water Jetting. BHR Group, United Kingdom, pp. 475–486

    Google Scholar 

  27. Foldyna J, Sitek L, Švehla B, Švehla S (2004) Utilization of ultrasound to enhance high-speed water jet effects. Ultrason Sonochem 11:131–137

    Article  Google Scholar 

  28. Weiss L, Aillerie M, Tazibt A, Tidu A (2014) Surface oxidation and phase transformation of the stainless steel by hybrid laser-waterjet impact. Mater Res Express 1(3) Article Number: 036501

  29. Farayibi PK, Abioye TE, Murray JW, Kinnell PK, Clare AT (2015) Surface improvement of laser clad Ti-6Al-4V using plain waterjet and pulsed electron beam irradiation. J Mater Process Technol 218:1–11

    Article  Google Scholar 

  30. Tschan CA, Keiner D, Mueller HD, Schwabe K, Gaab MR, Krauss JK, Sommer C, Oertel J (2010) Waterjet dissection of peripheral nerves: an experimental study of the sciatic nerve of rats. Neurosurgery 67(Supplement: 2) Article Number: ons368

  31. Nakagawa A, Ogawa Y, Amano K, Ishii Y, Tahara S, Horiguchi K, Kawamata T, Yano S, Arafune T, Washio T, Kuratsu J, Saeki N, Okada Y, Teramoto A, Tominaga T (2015) Pulsed laser-induced liquid jet system for treatment of sellar and parasellar tumors: safety evaluation. J Neurol Surg Part A 76(6):473–482

    Article  Google Scholar 

  32. Gilling P, Reuther R, Kahokehr A, Fraundorfer M (2016) Aquablation-image-guided robot-assisted waterjet ablation of the prostate: initial clinical experience. BJU Int 117(6):923–929

    Article  Google Scholar 

  33. Hlaváč LM, Kocich R, Gembalová L, Jonšta P, Hlaváčová IM (2015) AWJ cutting of copper processed by ECAP. Int J Adv Manuf Technol 86:885–894

    Article  Google Scholar 

  34. Lowe TC, Kunčická L, Kocich R, Davis CF, Hlaváč LM, Dvořák J (2015) The influence of consolidation procedure parameters on compaction of Al powder. METAL 2015: 24th Int. Metall. Mater. Conf.: Czech Republic, Brno, pp. 1352–1357.

  35. Hlaváč LM (2009) Investigation of the abrasive water jet trajectory curvature inside the kerf. J Mater Process Technol 209:4154–4161

    Article  Google Scholar 

  36. Hlaváč LM, Hlaváčová IM, Geryk V, Plančár Š (2015) Investigation of the taper of kerfs cut in steels by AWJ. Int J Adv Manuf Technol 77(9–12):1811–1818

    Article  Google Scholar 

  37. Hlaváč LM, Strnadel B, Kaličinský J, Gembalová L (2012) The model of product distortion in AWJ cutting. Int J Adv Manuf Technol 62:157–166

    Article  Google Scholar 

  38. Gryc R, Hlaváč LM, Mikoláš M, Šancer J, Daněk T (2014) Correlation of pure and abrasive water jet cutting of rocks. Int J Rock Mech Min Sci 65:149–152

    Google Scholar 

  39. Hlaváč LM (2015) Application of water jet description on the de-scaling process. Int J Adv Manuf Technol 80:721–735

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Poláček.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poláček, J., Janurová, E. Impact of pressure of surrounding medium on plain water jet cutting of rocks. Int J Adv Manuf Technol 90, 2185–2191 (2017). https://doi.org/10.1007/s00170-016-9554-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9554-8

Keywords

Navigation