Log in

Modeling and optimization of grinding parameters for custom-oriented twist drill with a Biglide parallel machine

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A modeling method is presented for grinding of the designated geometrical parameters of twist drill in a Biglide parallel machine, which has the more effective and economic potentialities for grinding of drill point. The grinding kinematics trajectory and condition are analyzed based on the structure of the Biglide parallel machine. Moreover, the mathematical model of twist drill flank are derived and used to develop the parametric models of twist drill based on the grinding parameters of the Biglide parallel machine. The optimal grinding parameters are obtained for the custom-oriented twist drill using genetic algorithm. The grinding experiment results using the optimal grinding parameters agree well with the designated geometrical parameters of twist drill and show a marked improvement in grinding precision of the drill point in the Biglide parallel machine, depending on the customers’ demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan L, Jiang F (2013) A practical optimization design of helical geometry drill point and its grinding process. Int J Adv Manuf Technol 64(9-12):1387–1394. doi:10.1007/s00170-012-4109-0

    Article  Google Scholar 

  2. Rao RV, Kalyankar VD (2014) Optimization of modern machining processes using advanced optimization techniques: a review. Int J Adv Manuf Technol 73(5):1159–1188. doi:10.1007/s00170-014-5894-4

    Article  Google Scholar 

  3. Wang X, Huang C, Zou B, Liu H, Wang J (2013) Effects of geometric structure of twist drill bits and cutting condition on tool life in drilling 42CrMo ultrahigh-strength steel. Int J Adv Manuf Technol 64:41–47. doi:10.1007/s00170-012-4026-2

    Article  Google Scholar 

  4. Galloway DF (1957) Some experiments on the influence of various factors on drill performance. Trans ASME 79:191–231

    Google Scholar 

  5. Hsieh JF (2008) NC data generation for 6-axis machine tools to produce a helical drill. Int J Adv Manuf Technol 36:535–546. doi:10.1007/s00170-006-0858-y

    Article  Google Scholar 

  6. 25. Abele E, Fujara M (2010) Simulation-based twist drill design and geometry optimization. CIRP Ann-Manuf Technol 59: 145-150. doi:10.1016/j.cirp.2010.03.063 DOI:10.1016/j.cirp.2010.03.063#doilink

  7. Tang F, Bai J, Wang X (2014) Practical and reliable carbide drill grinding methods based on a five-axis CNC grinder. Int J Adv Manuf Technol 73:659–667. doi:10.1007/s00170-014-5781-z

    Article  Google Scholar 

  8. Ehmann KF (1990) Grinding wheel profile definition for the manufacture of drill flutes. CIRP Ann-Manuf Technol 39(1): 153-156. doi:10.1016/S0007-8506(07)61024-5 DOI:10.1016/S0007-8506(07)61024-5#doilink

  9. Ren K, Ni J (1999) Analysis of drill flute and cutting angles. Int J Adv Manuf Technol 15(8):546–553

    Article  Google Scholar 

  10. Hsieh JF, Lin PD (2005) Drill point geometry of multi-flute drills. Int J Adv Manuf Technol 26:466–476. doi:10.1007/s00170-003-2027-x

    Article  Google Scholar 

  11. Zhang W, Wang X, He F, **ong D (2005) A practical method of modelling and simulation for drill fluting. Int J Mach Tool Manuf 46(6): 667-672. doi:10.1016/j.ijmachtools.07.007 DOI:10.1016/j.ijmachtools.2005.07.007#doilink

  12. Koehler W (2008) Analysis of the high performance drilling process: influence of shape and profile of the cutting edge of twist drills. J Manuf Sci Eng 130(5):051001–51007. doi:10.1115/1.2951932

    Article  Google Scholar 

  13. Sun Y, Wang J, Guo D, Zhang Q (2008) Modeling and numerical simulation for the machining of helical surface profiles on cutting tools. Int J Adv Manuf Technol 36:525–534. doi:10.1007/s00170-006-0860-4

    Article  Google Scholar 

  14. Tandon P, Gupta P, Dhand SG (2008) Modeling of twist drills in terms of 3D angles. Int J Adv Manuf Technol 38(5-6):543–550. doi:10.1007/s00170-007-1150-5

    Article  Google Scholar 

  15. Hsieh JF (2009) Mathematical modeling of complex helical dill point. J Manuf Sci Eng 131(6): 061006-1-061006-11. doi: 10.1115/1.4000438

  16. Anna P, Lluı́s PV, Dani T (2003) 3D Simulation of tool machining. Comput Graph 27(1):99–106

    Article  Google Scholar 

  17. Ma W, But WC, He P (2004) NURBS-based adaptive slicing for efficient rapid prototy**. Computer-Aided Design 36(13): 1309-1325. doi:10.1016/j.cad.2004.02.001 DOI:10.1016/j.cad.2004.02.001#doilink

  18. Dani T, Anna P, Lluı́s PV (2004) Boolean operations for 3D simulation of CNC machining of drilling tools. Comp-Aided Design 36(4):315–323. doi:10.1016/S0010-4485(03)00104-0

    Article  Google Scholar 

  19. Paul A, Kapoor SG. and DeVor RE (2004) Chisel edge and cutting lip shape optimization for improved twist drill point design. Int J Mach Tool Manuf 45: 421-431. doi:10.1016/j.ijmachtools..09.010 DOI:10.1016/j.ijmachtools.2004.09.010#doilink

  20. Hsieh JF (2005) Mathematical model for helical drill point. Int J Mach Tool Manuf 45(7-8):967–977. doi:10.1016/j.ijmachtools.2004.10.001

    Article  Google Scholar 

  21. Hsieh JM (2008) Manufacturing models for design and NC grinding of truncated-cone ball-end cutters. Int J Adv Manuf Technol 35:1124–1135. doi:10.1007/s00170-006-0794-x

    Article  Google Scholar 

  22. Wu YR, Fong ZH, Zhang ZX (2010) Simulation of a cylindrical form grinding process by the radial-ray shooting (RRS) method. Mech Mach Theor 45(2): 261-272. doi:10.1016/j.mechmachtheory.2009.09.005 DOI:10.1016/j.mechmachtheory.2009.09.005#doilink

  23. Zhang W, Li Z, **ong D, He F, Hu J (2013) Machining movement based analytical modeling of twist drill and its application. CIRP J Manuf Sci Technol 6: 13-21. doi:10.1016/j.cirpj.2012.07.001 DOI:10.1016/j.cirpj.2012.07.001#doilink

  24. Rehsteiner F, Neugebauer R, Spiewak S and Wieland F (1999) Putting parallel kinematics machines(PKM) to productive work. CIRP Ann-Manuf Technol 48(1): 345-350. doi:10.1016/S0007-8506(07)63199-0 DOI:10.1016/S0007-8506(07)63199-0#doilink

  25. Tlusty J, Ziegert J and Ridgrway S (1999) Fundamental comparison of the use of serial and parallel kinematics for machine tools. CIRP Ann-Manuf Technol 48(1): 351-356. doi:10.1016/S0007-8506(07)63200-4 DOI:10.1016/S0007-8506(07)63200-4#doilink

  26. Wang JS and Tang XQ (2003) Analysis and dimensional design of a novel hybrid machine tool. Int J Mach Tool Manuf 43(7): 647-655. doi:10.1016/S0890-6955(03)00040-3 DOI:10.1016/S0890-6955(03)00040-3#doilink

  27. Weck M and Staimer D (2002) Parallel kinematic machine tools-current state and future potentials. CIRP Ann-Manuf Technol 51(2): 671-683. doi:10.1016/S0007-8506(07)61706-5 DOI:10.1016/S0007-8506(07)61706-5#doilink

  28. Olarra A, Allen JM, Axinte DA (2014) Experimental evaluation of a special purpose miniature machine tool with parallel kinematics architecture-Free leg hexapod. Precis Eng 2: 1-16. doi:10.1016/j.precisioneng.2014.02.009 DOI:10.1016/j.precisioneng.2014.02.009#doilink

  29. Chyan HC and Ehmann KF (1998) Development of curved helical micro-drill point technology for micro-hole drilling. Mechatronics 8: 337-358. doi:10.1016/S0957-4158(97)00055-X DOI:10.1016/S0957-4158(97)00055-X#doilink

  30. Li B, Hu X, Wang H (2006) Analysis and simulation for a parallel drill point grinder. Part 2, grinding kinematic modeling and simulation. Int J Adv Manuf Technol 30(3-4):221–226. doi:10.1007/s00170-005-0079-9

    Article  Google Scholar 

  31. Zou P (2003) Kinematic analysis of a Biglide parallel grinder. J Mater Process Technol 138(1): 461-463,. doi:10.1016/S0924-0136(03)00118-3 DOI:10.1016/S0924-0136(03)00118-3#doilink

  32. Li B, Hu Y, Wang H (2007) Analysis and simulation for a parallel drill point grinder. Part 1, kinematics, workspace and singularity analysis. Int J Adv Manuf Technol 31(9-10):915–925. doi:10.1007/s00170-005-0265-9

    Article  Google Scholar 

  33. Zou P, Yang X, Ai M (2010) Study on twist drill grinding with a biglide parallel grinder. Adv Mater Res 97–101(3):2119–2122. doi:10.4028/www.scientific.net/AMR.97-101.2119

    Article  Google Scholar 

  34. Li Z, Zhang W, **ong D (2010) A practical method to determine rake angles of twist drill by measuring the cutting edge. Int J Mach Tool Manuf 50(8), 747-751. doi:10.1016/j.ijmachtools.2010.04.001 DOI:10.1016/j.ijmachtools.2010.04.001#doilink

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myong Il Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, P., Kim, M.I. & Liu, F. Modeling and optimization of grinding parameters for custom-oriented twist drill with a Biglide parallel machine. Int J Adv Manuf Technol 88, 691–699 (2017). https://doi.org/10.1007/s00170-016-8805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8805-z

Keywords

Navigation