Log in

FEM analysis on the abrasive erosion process in ultrasonic-assisted abrasive waterjet machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, a finite element method (FEM) explicit dynamic simulation was employed to investigate the abrasive erosion process in ultrasonic-assisted abrasive waterjet (AWJ) machining. Johnson-Holmquist ceramic material model with failure criteria was utilized to realize the deletion of the failure elements for the simulation of material removal. The effects of impact angle and particle shape on the erosion rate were analyzed. The residual stress in workpiece induced by the erosion under the vibration condition was compared to that under the non-vibration condition. Furthermore, the ultrasonic-assisted erosion processes of multiple particles under different overlap** conditions on the impact areas were simulated. The simulation results show that the application of vibration can effectively improve the erosion rate and influences the contact process between the particle and the workpiece surface. The residual stress distribution in the section of workpiece parallel to the vibration direction is not symmetric under the vibration condition, which is quite different from the nearly symmetric one obtained without vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paul S, Hoogstrate AM, van Luttervelt CA, Kals HJJ (1998) Analytical modelling of the total depth of cut in the abrasive water jet machining of polycrystalline brittle material. J Mater Process Technol 73:206–212. doi:10.1016/S0924-0136(97)00230-6

    Article  Google Scholar 

  2. Zhu HT, Huang CZ, Wang J, Li QL, Che CL (2009) Experimental study on abrasive waterjet polishing for hard–brittle materials. Int J Mach Tools Manuf 49:569–578. doi:10.1016/j.ijmachtools.2009.02.005

    Article  Google Scholar 

  3. Nategh MJ, Razavi H, Abdullah A (2012) Analytical modeling and experimental investigation of ultrasonic-vibration assisted oblique turning, part I: kinematics analysis. Int J Mech Sci 63:1–11. doi:10.1016/j.ijmecsci.2012.04.007

    Article  Google Scholar 

  4. Razavi H, Nategh MJ, Abdullah A (2012) Analytical modeling and experimental investigation of ultrasonic-vibration assisted oblique turning, part II: dynamics analysis. Int J Mech Sci 63:12–25. doi:10.1016/j.ijmecsci.2012.05.005

    Article  Google Scholar 

  5. Razavi H, Nategh MJ, Abdullah A (2012) Analytical modeling and experimental investigation of ultrasonic-vibration assisted oblique turning, part III: experimental investigation. Int J Mech Sci 63:26–36. doi:10.1016/j.ijmecsci.2012.06.007

    Article  Google Scholar 

  6. Uhlmann E, Spur G (1998) Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance. CIRP Ann Manuf Technol 47:249–252. doi:10.1016/S0007-8506(07)62828-5

    Article  Google Scholar 

  7. Tawakoli T, Azarhoushang B (2008) Influence of ultrasonic vibrations on dry grinding of soft steel. Int J Mach Tools Manuf 48:1585–1591. doi:10.1016/j.ijmachtools.2008.05.010

    Article  Google Scholar 

  8. Nik MG, Movahhedy MR, Akbari J (2012) Ultrasonic-assisted grinding of Ti6Al4V alloy. Procedia CIRP 1:353–358. doi:10.1016/j.procir.2012.04.063

    Article  Google Scholar 

  9. Mulik RS, Pandey PM (2010) Mechanism of surface finishing in ultrasonic-assisted magnetic abrasive finishing process. Mater Manuf Process 25:1418–1427. doi:10.1080/10426914.2010.499580

    Article  Google Scholar 

  10. Yu F, Wang JM, Liu FH (2011) Numerical simulation of single particle acceleration process by SPH coupled FEM for abrasive waterjet cutting. Int J Adv Manuf Technol 59:193–200. doi:10.1007/s00170-011-3495-z

    Google Scholar 

  11. Jayswal SC, Jain VK, Dixit PM (2005) Modeling and simulation of magnetic abrasive finishing process. Int J Adv Manuf Technol 26:477–490. doi:10.1007/s00170-004-2180-x

    Article  Google Scholar 

  12. Kumar G, Yadav V (2008) Temperature distribution in the workpiece due to plane magnetic abrasive finishing using FEM. Int J Adv Manuf Technol 41:1051–1058. doi:10.1007/s00170-008-1557-7

    Article  Google Scholar 

  13. Wang JM, Gao N, Gong WJ (2010) Abrasive waterjet machining simulation by SPH method. Int J Adv Manuf Technol 50:227–234. doi:10.1007/s00170-010-2521-x

    Article  Google Scholar 

  14. Wang JM, Liu FH, Yu F, Zhang G (2011) Shot peening simulation based on SPH method. Int J Adv Manuf Technol 56:571–578. doi:10.1007/s00170-011-3193-x

    Article  Google Scholar 

  15. Woytowitz P, Richman R (1999) Modeling of damage from multiple impacts by spherical particles. Wear 233–235:120–133. doi:10.1016/S0043-1648(99)00173-8

    Article  Google Scholar 

  16. ElTobgy M, Ng E, Elbestawi M (2005) Finite element modeling of erosive wear. Int J Mach Tools Manuf 45:1337–1346. doi:10.1016/j.ijmachtools.2005.01.007

    Article  Google Scholar 

  17. Junkar M, Jurisevic B, Fajdiga M, Grah M (2006) Finite element analysis of single-particle impact in abrasive water jet machining. Int J Impact Eng 32:1095–1112. doi:10.1016/j.ijimpeng.2004.09.006

    Article  Google Scholar 

  18. John O (1998) LS-DYNA theoretical manual. Livermore Software Technology Corporation, California

    Google Scholar 

  19. Holmquist TJ, Templeton DW, Bishnoi KD (2001) Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications. Int J Impact Eng 25:211–231. doi:10.1016/S0734-743X(00)00046-4

    Article  Google Scholar 

  20. Li WY, Wang J, Zhu HT, Li HZ, Huang CZ (2013) On ultrahigh velocity micro-particle impact on steels—a single impact study. Wear 305:216–227. doi:10.1016/j.wear.2013.06.011

    Article  Google Scholar 

  21. Johnson GR, Holmquist TJ (1994) An improved computational constitutive model for brittle materials. AIP Conf Proc 309:981–984. doi:10.1063/1.46199

    Article  Google Scholar 

  22. Momber A, Kovacevic R (1998) Principles of abrasive water jet machining. doi: 10.1007/978-1-4471-1572-4

  23. Bitter J (1963) A study of erosion phenomena part I. Wear 6:5–21. doi:10.1016/0043-1648(63)90003-6

    Article  Google Scholar 

  24. Finnie I (1960) Erosion of surfaces by solid particles. Wear 3:87–103. doi:10.1016/0043-1648(60)90055-7

    Article  Google Scholar 

  25. Wang S, Li Y, Yao M, Wang R (1998) Compressive residual stress introduced by shot peening. J Mater Process Technol 73:64–73. doi:10.1016/S0924-0136(97)00213-6

    Article  Google Scholar 

  26. Hong T, Ooi JY, Shaw B (2008) A numerical simulation to relate the shot peening parameters to the induced residual stresses. Eng Fail Anal 15:1097–1110. doi:10.1016/j.engfailanal.2007.11.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanzhen Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Huang, C., Zhu, H. et al. FEM analysis on the abrasive erosion process in ultrasonic-assisted abrasive waterjet machining. Int J Adv Manuf Technol 78, 1641–1649 (2015). https://doi.org/10.1007/s00170-014-6768-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6768-5

Keywords

Navigation