Log in

Finite element implementation of a geometrically and physically nonlinear consolidation model

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The paper presents a rather general formulation of a porous medium deformation coupled with a fluid flowing through the pores within the framework of physical and geometric nonlinearity. The boundary-value problem is formulated in terms of the solid phase displacement increment, fluid pressure and porosity increments in the form of differential and variational equations. The equations were derived from the general conservation laws of Continuum Mechanics using spatial averaging over a representative volume element (RVE). The model takes into account the porosity and permeability evolutions during deformation process. The equations of filtration and porosity evolution are formulated in the material coordinate system related to the solid phase, according to the idea of Arbitrary Lagrangian–Eulerian (ALE) approach. The linearization of variational equations was done using Gateaux differentiation technique. The proper finite elements were used for the spatial discretization of the saddle system of equations to satisfy well-known Ladyzhenskaya–Babuška–Brezzi (LBB) correctness condition. A generalization of the implicit time integration scheme with internal iterations at each time step according to the Uzawa method is employed. The convergence of the iterative process is partly theoretically studied. The formulation is numerically implemented in the form of a self-made computer code. Examples of calculations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Artamonova, N.B., Mukatova, A.Z., Sheshenin, S.V.: Asymptotic analysis of the equilibrium equation of a fluid-saturated porous medium by the homogenization method. Mech. Solids (2017). https://doi.org/10.3103/S002565441702011X

    Article  Google Scholar 

  2. Artamonova, N., Sheshenin, S.: Nonlinear coupled consolidation problem with large strains. Proceedings in Applied Mathematics and Mechanics (2021). https://doi.org/10.1002/pamm.202000269

  3. Artamonova, N.B., Sheshenin, S.V., Frolova, Y.V., Bessonova, O.Y., Novikov, P.V.: Calculating components of the effective tensors of elastic moduli and Biot’s parameter of porous geocomposites. Mech. Compos. Mater. (2020). https://doi.org/10.1007/s11029-020-09846-w

    Article  Google Scholar 

  4. Bergamaschi, L., Ferronato, M., Gambolati, G.: Mixed constraint preconditioners for the iterative solution to FE coupled consolidation equations. J. Comput. Phys. (2008). https://doi.org/10.1016/j.jcp.2008.08.002

    Article  MathSciNet  MATH  Google Scholar 

  5. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. (1941). https://doi.org/10.1063/1.1712886

    Article  MATH  Google Scholar 

  6. Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bonet, J., Wood, R.D.: Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  8. Borja, R.I., Alarcón, E.: A mathematical framework for finite strain elastoplastic consolidation. Part 1: Balance laws, variational formulation, and linearization. Computer Methods Appl Mech Eng (1995). https://doi.org/10.1016/0045-7825(94)00720-8

    Article  MATH  Google Scholar 

  9. Borja, R.I., Tamagnini, C., Alarcón, E.: Elastoplastic consolidation at finite strain. Part 2: Finite element implementation and numerical examples. Computer Methods Appl. Mech. Eng. (1998). https://doi.org/10.1016/S0045-7825(98)80105-9

    Article  MATH  Google Scholar 

  10. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer-Verlag, New York (1991)

    Book  MATH  Google Scholar 

  11. Bychenkov, Yu.V., Chizhonkov, E.V.: Optimization of one three-parameter method of solving an algebraic system of the Stokes type. Russian J. Numer. Anal. Math. Modell. 14(5), 429–440 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carter, J.P., Booker, J.R., Davis, E.H.: Finite deformation of an elasto-plastic soil. Int. J. Numer. Anal. Methods Geomech. 1, 25–43 (1977)

    Article  MATH  Google Scholar 

  13. Carter, J.P., Booker, J.R., Small, J.C.: The analysis of finite elasto-plastic consolidation. Int. J. Numer. Anal. Methods Geomech. 3, 107–129 (1979)

    Article  MATH  Google Scholar 

  14. Chizhonkov, E.V., Kargin, A.V.: On solution of the Stokes problem by the iteration of boundary conditions. Russian J. Numer. Anal. Math. Modell. 21(1), 21–38 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dean, R.H., Gai, X., Stone, C.M., Minkoff, S.E.: A comparison of techniques for coupling porous flow and geomechanics. SPE J. 11(1), 132–140 (2006)

    Article  Google Scholar 

  16. dell’Isola, F., Madeo, A., Seppecher, P.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. (2009). https://doi.org/10.1016/j.ijsolstr.2009.04.008

    Article  MathSciNet  MATH  Google Scholar 

  17. Deng, Y.-B., Liu, G.-B., Zheng, R.-Y., **e, K.-H.: Finite element analysis of Biot’s consolidation with a coupled nonlinear flow model. Math. Probl. Eng. (2016). https://doi.org/10.1155/2016/3047213

    Article  MathSciNet  MATH  Google Scholar 

  18. Detournay, E., Cheng, A.H.: Fundamentals of poroelasticity. In: Charles, F. (ed.) Analysis and design methods. principles, practice and projects. Pergamon Press, Oxford (1993)

    Google Scholar 

  19. Donea, J., Huerta, A.: Finite element methods for flow problems. Wiley, Chichester (2003)

    Book  Google Scholar 

  20. D’yakonov, E.G.: Optimization in solving elliptic problems. CRC-Press, Boca Raton (1996)

    MATH  Google Scholar 

  21. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. numerical mathematics and scientific computation. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  22. Fatt, I.: Compressibility of sandstones at low to moderate pressures. Bull. Am. Assoc. Petrol. Geol. 42(8), 1924–1957 (1958)

    Google Scholar 

  23. Ferronato, M., Castelletto, N., Gambolati, G.: A fully coupled 3-D mixed finite element model of Biot consolidation. J. Comput. Phys. (2010). https://doi.org/10.1016/j.jcp.2010.03.018

    Article  MATH  Google Scholar 

  24. Ferronato, M., Gambolati, G., Teatini, P.: Ill-conditioning of finite element poroelasticity equations. Int. J. Solids Struct. (2001). https://doi.org/10.1016/S0020-7683(00)00352-8

    Article  MATH  Google Scholar 

  25. Geertsma, J.: The effect of fluid pressure decline on volumetric changes of porous rocks. Trans. AIME (1957). https://doi.org/10.2118/728-g

    Article  MATH  Google Scholar 

  26. Giorgio, I., De Angelo, M., Turco, E., Misra A.: A Biot–Cosserat two-dimensional elastic nonlinear model for a micromorphic medium. Continuum. Mech. Thermodyn. (2020). https://www.researchgate.net/publication/337306506

  27. Hansbo, S.: Experience of consolidation process from test areas with and without vertical drains. In: Indraratna, B., Chu, J. (eds.) Ground improvement - case histories, vol. 3, pp. 3–49. Elsevier, London (2005)

    Chapter  Google Scholar 

  28. Jeannin, L., Mainguy, M., Masson, R., Vidal-Gilbert, S.: Accelerating the convergence of coupled geomechanical-reservoir simulations. Int. J. Numer. Anal. Methods Geomech. (2006). https://doi.org/10.1002/nag.576

    Article  MATH  Google Scholar 

  29. Kim, J., Tchelepi, H.A., Juanes, R.: Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics. SPE J. 16, 249–262 (2011)

    Article  MATH  Google Scholar 

  30. Kiselev, F.B., Sheshenin, S.V.: A finite-difference scheme for a nonstationary filtration problem in layered soils. Mech. Solids. 31(4), 109–116 (1996)

    Google Scholar 

  31. Levin, V.A., Lokhin, V.V., Zingerman, K.M.: Effective elastic properties of porous materials with randomly dispersed pores: Finite deformation. J. Appl. Mech. (2000). https://doi.org/10.1115/1.1286287

    Article  MATH  Google Scholar 

  32. Levin, V.A., Vdovichenko, I.I., Vershinin, A.V., Yakovlev, M.Y., Zingerman, K.M.: An approach to the computation of effective strength characteristics of porous materials. Lett. Mater. (2017). https://doi.org/10.22226/2410-3535-2017-4-452-454

    Article  Google Scholar 

  33. Levin, V.A., Zingerman, K.M.: On the construction of effective constitutive relations for porous elastic materials subjected to finite deformations including the case of their superposition. Doklady Phys. (2002). https://doi.org/10.1134/1.1462086

    Article  Google Scholar 

  34. Lewis, R.W., Nithiarasu, P., Seetharamu, K.N.: Fundamentals of the finite element method for heat and fluid flow. Wiley, New Jersey (2004)

    Book  Google Scholar 

  35. Liu, Z., Liu, R.: A fully implicit and consistent finite element framework for modeling reservoir compaction with large deformation and nonlinear flow model. part I: theory and formulation. Comput. Geosci. (2018). https://doi.org/10.1007/s10596-017-9715-3

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, Z., Liu, R.: A fully implicit and consistent finite element framework for modeling reservoir compaction with large deformation and nonlinear flow model Part II: verification and numerical example. Comput. Geosci. (2018). https://doi.org/10.1007/s10596-017-9716-2

    Article  MathSciNet  MATH  Google Scholar 

  37. Nur, A., Byerlee, J.D.: An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. (1971). https://doi.org/10.1029/JB076i026p06414

    Article  Google Scholar 

  38. Placidi, L., dell’Isola, F., Ianiro, N., Sciarra, G.: Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. - A/Solids. 27(4), 582–606 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Prevost, J.H.: Implicit-explicit schemes for nonlinear consolidation. Computer Methods Appl. Mech. Eng. 39, 225–239 (1983)

    Article  ADS  MATH  Google Scholar 

  40. Reed, M.B.: An investigation of numerical errors in the analysis of consolidation by finite elements. Int. J. Numer. Anal. Methods Geomech. 8, 243–257 (1984)

    Article  MATH  Google Scholar 

  41. Savatorova, V.L., Talonov, A.V., Vlasov, A.N., Volkov-Bogorodskiy, D.B.: Averaging the nonstationary equations of viscous substance filtration through a rigid porous medium. Compos.: Mech., Comput. Appl. Int. J. (2014). https://doi.org/10.1615/CompMechComputApplIntJ.v5.i1.30

    Article  Google Scholar 

  42. Savatorova, V.L., Talonov, A.V., Vlasov, A.N., Volkov-Bogorodskiy, D.B.: Brinkman’s filtration of fluid in rigid porous media: multiscale analysis and investigation of effective permeability. Compos.: Mech., Comput. Appl. Int. J. (2015). https://doi.org/10.1615/CompMechComputApplIntJ.v6.i3.50

    Article  Google Scholar 

  43. Sciarra, G., dell’Isola, F., Coussy, O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Selvadurai, A.P.S., Suvorov, A.P.: Coupled hydro-mechanical effects in a porohyperelastic material. J. Mech. Phys. Solids 91, 311–333 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  45. Settari, A., Walters, D.A.: Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. SPE J. (2001). https://doi.org/10.2118/74142-PA

    Article  Google Scholar 

  46. Sheshenin, S.V., Kakushev, E.R., Artamonova, N.B.: Simulation of unsteady fluid filtration caused by the exploitation of underground resources. Moscow Univ. Mech. Bull. (2011). https://doi.org/10.3103/S0027133011050050

    Article  MATH  Google Scholar 

  47. Sheshenin, S.V., Lazarev, B.P., Artamonova, N.B.: Application of the asymptotic homogenization method to find the expansion coefficient of a water-saturated porous medium during freezing processes. Moscow Univ. Mech. Bull. 71(6), 127–131 (2016)

    Article  MATH  Google Scholar 

  48. Simo, J.C., Hughes, T.J.R.: Computational inelasticity. Springer-Verlag, New York (1998)

    MATH  Google Scholar 

  49. Simon, B.R.: Multiphase poroelastic finite element models for soft tissue structures. Appl. Mech. Rev. 45, 191–218 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  50. Skrzat, A., Eremeyev, V.A.: On the effective properties of foams in the framework of the couple stress theory. Continuum Mech. Thermodyn. (2020). https://doi.org/10.1007/s00161-020-00880-6

    Article  MathSciNet  Google Scholar 

  51. Styopin, N.E., Vershinin, A.V., Zingerman, K.M., Levin, V.A.: Comparative analysis of different variants of the Uzawa algorithm in problems of the theory of elasticity for incompressible materials. J. Adv. Res. (2016). https://doi.org/10.1016/j.jare.2016.08.001

    Article  Google Scholar 

  52. Vershinin, A.V., Levin, V.A., Zingerman, K.M., Sboychakov, A.M., Yakovlev, M.Y.: Software for estimation of second order effective material properties of porous samples with geometrical and physical nonlinearity accounted for. Adv. Eng. Softw. (2015). https://doi.org/10.1016/j.advengsoft.2015.04.007

    Article  Google Scholar 

  53. Wheeler, M.F., Gai, X.: Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity. Numer. Methods Partial Diff. Eq. (2007). https://doi.org/10.1002/num.20258

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (project No. 20-01-00431) and by the Ministry of Education and Science of the Russian Federation as part of the program of the Moscow Center for Fundamental and Applied Mathematics under the agreement No. 075-15-2022-284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina B. Artamonova.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artamonova, N.B., Sheshenin, S.V. Finite element implementation of a geometrically and physically nonlinear consolidation model. Continuum Mech. Thermodyn. 35, 1291–1308 (2023). https://doi.org/10.1007/s00161-022-01124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01124-5

Keywords

Navigation