Log in

How to define the storage and loss moduli for a rheologically nonlinear material?

A constructive review of nonlinear rheological measures

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A large amplitude oscillatory shear (LAOS) is considered in the strain-controlled regime, and the interrelation between the Fourier transform and the stress decomposition approaches is established. Several definitions of the generalized storage and loss moduli are examined in a unified conceptual scheme based on the Lissajous–Bowditch plots. An illustrative example of evaluating the generalized moduli from a LAOS flow is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larson, R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, New York (1998)

    Google Scholar 

  2. Abali, B.E., Wu, C.-C., Müller, W.H.: An energy-based method to determine material constants in nonlinear rheology with applications. Contin. Mech. Thermodyn. 28, 1221–1246 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Graf, G., Kocherbitov, V.: Determination of sorption isotherm and rheological properties of lysozyme using a high-resolution humidity scanning QCM-D technique. J. Phys. Chem. B 117, 10017–10026 (2013)

    Article  Google Scholar 

  4. Znamenskaya, Y., Sotres, J., Gavryushov, S., Engblom, J., Arnebrant, T., Kocherbitov, V.: Water sorption and glass transition of pig gastric mucin studied by QCM-D. J. Phys. Chem. B 117, 2554–2563 (2013)

    Article  Google Scholar 

  5. Björklund, S., Kocherbitov, V.: Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes. Rev. Sci. Instrum. 86, 055105 (2015)

    Article  ADS  Google Scholar 

  6. Christensen, R.M.: Theory of Viscoelasticity. Academic Press, New York (1971)

    Google Scholar 

  7. Pipkin, A.C.: Lectures on Viscoelasticity Theory. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  8. Brader, J.M., Siebenbürger, M., Ballauff, M., Reinheimer, K., Wilhelm, M., Frey, S.J., Weysser, F., Fuchs, M.: Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments. Phys. Rev. E 82, 061401 (2010)

    Article  ADS  Google Scholar 

  9. Argatov, I.: Sinusoidally-driven flat-ended indentation of time-dependent materials: asymptotic models for low and high rate loading. Mech. Mater. 48, 56–70 (2012)

    Article  Google Scholar 

  10. Cho, K.S., Hyun, K., Ahn, K.H., Lee, S.J.: A geometrical interpretation of large amplitude oscillatory shear response. J. Rheol. 49, 747–758 (2005)

    Article  ADS  Google Scholar 

  11. Thompson, R.L., Alicke, A.A., de Souza Mendes, P.R.: Model-based material functions for SAOS and LAOS analyses. J. Non Newton. Fluid Mech. 215, 19–30 (2015)

    Article  MathSciNet  Google Scholar 

  12. Kim, H., Hyun, K., Kim, D.-J., Cho, K.S.: Comparison of interpretation methods for large amplitude oscillatory shear response. Korea Aust. Rheol. J. 18(2), 91–98 (2006)

    Google Scholar 

  13. Ewoldt, R.H., Hosoi, A.E., McKinley, G.H.: New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52, 1427–1458 (2008)

    Article  ADS  Google Scholar 

  14. Yu, W., Wang, P., Zhou, C.: General stress decomposition in nonlinear oscillatory shear flow. J. Rheol. 53, 215–238 (2009)

    Article  ADS  Google Scholar 

  15. Ewoldt, R.H.: Defining nonlinear rheological material functions for oscillatory shear. J. Rheol. 57, 177–195 (2013)

    Article  ADS  Google Scholar 

  16. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 6th edn. Academic Press, San Diego (2000)

    MATH  Google Scholar 

  17. Krylov, N., Bogoliubov, N.: Introduction to Non-linear Mechanics. Princeton University Press, Princeton (1947)

    MATH  Google Scholar 

  18. Ilyin, S., Kulichikhin, V., Malkin, A.: Characterization of material viscoelasticity at large deformations. Appl. Rheol. 24, 13653 (2014)

    Google Scholar 

  19. Läuger, J., Stettin, H.: Differences between stress and strain control in the non-linear behavior of complex fluids. Rheol. Acta 49, 909–930 (2010)

    Article  Google Scholar 

  20. Hess, A., Aksel, N.: Yielding and structural relaxation in soft materials: evaluation of strain-rate frequency superposition data by the stress decomposition method. Phys. Rev. E 84, 051502 (2011)

    Article  ADS  Google Scholar 

  21. Cho, K.S., Song, K.-W., Chang, G.-S.: Scaling relations in nonlinear viscoelastic behavior of aqueous PEO solutions under large amplitude oscillatory shear flow. J. Rheol. 54, 27–63 (2010)

    Article  ADS  Google Scholar 

  22. Rogers, S.A., Erwin, B.M., Vlassopoulos, D., Cloitre, M.: A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid. J. Rheol. 55, 435–458 (2011)

    Article  ADS  Google Scholar 

  23. Rogers, S.A.: A sequence of physical processes determined and quantified in LAOS: an instantaneous local 2D/3D approach. J. Rheol. 56, 1129–1151 (2012)

    Article  ADS  Google Scholar 

  24. Giacomin, A.J., Oakley, J.G.: Obtaining Fourier series graphically from large amplitude oscillatory shear loops. Rheol. Acta 32, 328–332 (1993)

    Article  Google Scholar 

  25. Bae, J.E., Lee, M., Cho, K.S., Seo, K.H., Kang, D.G.: Comparison of stress-controlled and strain-controlled rheometers for large amplitude oscillatory shear. Rheol. Acta 52, 841–857 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Argatov.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argatov, I., Iantchenko, A. & Kocherbitov, V. How to define the storage and loss moduli for a rheologically nonlinear material?. Continuum Mech. Thermodyn. 29, 1375–1387 (2017). https://doi.org/10.1007/s00161-017-0584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0584-8

Keywords

Navigation