Log in

Adjoint methods of sensitivity analysis for Lyapunov equation

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The existing direct sensitivity analysis of optimal structural vibration control based on Lyapunov’s second method is computationally expensive when applied to finite element models with a large number of degree-of-freedom and design variables. A new adjoint sensitivity analysis method is proposed in this paper. Using the new method the sensitivity of the performance index, a time integral of a quadratic function of state variables, with respect to all design variables is calculated by solving two Lyapunov matrix equations. In consideration of computational cost reduction, the new adjoint method is further extended to the reduced order model by Guyan method. This makes the method applicable to large finite element models. Two numerical examples demonstrate the accuracy and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asami T, Nishihara O, Baz AM (2002) Analytical solutions to H∞ and H2 optimization of dynamic vibration absorbers attached to damped linear systems. J Vib Acoust 124(2):284–295

    Article  Google Scholar 

  • Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin, Heidelberg

    Google Scholar 

  • Díaaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35(7):1487–1502

    Article  Google Scholar 

  • Du D (2008) Analytical solutions for DVA optimization based on the lyapunov equation. J Vib Acoust 130(5):054501

    Article  Google Scholar 

  • Guyan RJ (1965) Reduction of stiffness and mass matrices. AIAA J 3(2):380–380

    Article  Google Scholar 

  • Housner GW, Bergman L, Caughey TK et al (1997) Structural control: past, present, and future. J Eng Mech 123(9):897–971

    Article  Google Scholar 

  • Irons B (1965) Structural eigenvalue problems—elimination of unwanted variables. AIAA J 3(5):961–962

    Article  Google Scholar 

  • Jensen JS, Nakshatrala PB, Tortorelli DA (2014) On the consistency of adjoint sensitivity analysis for structural optimization of linear dynamic problems. Struct Multidiscip Optim 49(5):831–837

    Article  MathSciNet  Google Scholar 

  • Kalman RE, Bertram JE (1960) Control system analysis and design Via the “second method” of lyapunov: I—continuous-time systems. J Fluids Eng 82(2):371–393

    MathSciNet  Google Scholar 

  • Kang Z, Wang X, Wang R (2009) Topology optimization of space vehicle structures considering attitude control effort. Finite Elem Anal Des 45:431–438

    Article  Google Scholar 

  • Korenev BG, Reznikov LM (1993) Dynamic vibration absorbers: theory and technical applications. Wiley, Chichester

    Google Scholar 

  • Marano GC, Greco R, Trentadue F, Chiaia B (2007) Constrained reliability-based optimization of linear tuned mass dampers for seismic control. Int J Solids Struct 44(22):7370–7388

    Article  MATH  Google Scholar 

  • Marano GC, Greco R, Chiaia B (2010) A comparison between different optimization criteria for tuned mass dampers design. J Sound Vib 329(23):4880–4890

    Article  Google Scholar 

  • Mead DJ, Meador DJ (1998) Passive vibration control. Wiley, Chichester

    Google Scholar 

  • Molter A, da Silveira OA, Bottega V, Fonseca JS (2013) Integrated topology optimization and optimal control for vibration suppression in structural design. Struct Multidiscip Optim 47(3):389–397

    Article  MathSciNet  MATH  Google Scholar 

  • Ogata K, Yang Y (1970) Modern control engineering

  • Ozer MB, Royston TJ (2005) Extending Den Hartog’s vibration absorber technique to multi-degree-of-freedom systems. J Vib Acoust 127(4):341–350

    Article  Google Scholar 

  • Pennestrı E (1998) An application of Chebyshev's min–max criterion to the optimal design of a damped dynamic vibration absorber. J Sound Vib 217(4):757–765

    Article  Google Scholar 

  • Preumont A (1997) Vibration control of active structures. Kluwer academic publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Rüdinger F (2006) Optimal vibration absorber with nonlinear viscous power law dam** and white noise excitation. J Eng Mech 132(1):46–53

    Article  Google Scholar 

  • Van Keulen F, Haftka RT, Kim NH (2005) Review of options for structural design sensitivity analysis. Part 1: linear systems. Comput Methods Appl Mech Eng 194(30):3213–3243

    Article  MATH  Google Scholar 

  • Wang BP, Kitis L, Pilkey WD (1984) Transient response optimization of vibrating structures by Liapunov’s second method. J Sound Vib 96:505–512

    Article  MATH  Google Scholar 

  • Wang W, Cheng GD, Li QH (2013) Fast dynamic performance optimization of complicated beam-type structures based on two new reduced physical models. Eng Optim 45(7):835–850

    Article  MathSciNet  Google Scholar 

  • Zhang X, Kang Z (2013) Topology optimization of dam** layers for minimizing sound radiation of shell structures. J Sound Vibration 332:2500–2519

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by National Natural Science Foundation of China (91216201 and 11372062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo ** Wang.

Appendix A Adjoint sensitivity analysis for the reduced model by Guyan reduction

Appendix A Adjoint sensitivity analysis for the reduced model by Guyan reduction

The derivative of objective function with respect to design parameters can be expressed as (42)

where, \( \frac{\partial {\mathbf{X}}_{re}(0)}{\partial {d}_k}={\left(\begin{array}{cc}\hfill \frac{\partial {\mathbf{u}}_{re,0}^T}{\partial {d}_k}\hfill & \hfill \frac{\partial {\mathbf{v}}_{re,0}^T}{\partial {d}_k}\hfill \end{array}\right)}^T \). From the (37), we get that

$$ \frac{\partial {\mathbf{u}}_0}{\partial {d}_k}=\frac{\partial \mathbf{T}}{\partial {d}_k}{\mathbf{u}}_{re,0}+\mathbf{T}\frac{\partial {\mathbf{u}}_{re,0}}{\partial {d}_k},\;\frac{\partial {\mathbf{v}}_0}{\partial {d}_k}=\frac{\partial \mathbf{T}}{\partial {d}_k}{\mathbf{v}}_{re,0}+\mathbf{T}\frac{\partial {\mathbf{v}}_{re,0}}{\partial {d}_k} $$
(54)

T cannot be inverted directly, so premultiply both sides of the equation by matrix T T M. Then, we get

$$ {\mathbf{T}}^T\mathbf{M}\frac{\partial {\mathbf{u}}_0}{\partial {d}_k}={\mathbf{T}}^T\mathbf{M}\frac{\partial \mathbf{T}}{\partial {d}_k}{\mathbf{u}}_{re,0}+{\mathbf{T}}^T\mathbf{M}\mathbf{T}\frac{\partial {\mathbf{u}}_{re,0}}{\partial {d}_k} $$
(55)
$$ {\mathbf{T}}^T\mathbf{M}\frac{\partial {\mathbf{v}}_0}{\partial {d}_k}={\mathbf{T}}^T\mathbf{M}\frac{\partial \mathbf{T}}{\partial {d}_k}{\mathbf{v}}_{re,0}+{\mathbf{T}}^T\mathbf{M}\mathbf{T}\frac{\partial {\mathbf{v}}_{re,0}}{\partial {d}_k} $$
(56)

Then

$$ \frac{\partial {\mathbf{u}}_{re,0}}{\partial {d}_k}={\mathbf{M}}_{re}^{-1}{\mathbf{T}}^T\mathbf{M}\frac{\partial \mathbf{T}}{\partial {d}_k}{\mathbf{u}}_{re,0}-{\mathbf{M}}_{re}^{-1}{\mathbf{T}}^T\mathbf{M}\frac{\partial {\mathbf{u}}_0}{\partial {d}_k} $$
(57)
$$ \frac{\partial {\mathbf{v}}_{re,0}}{\partial {d}_k}={\mathbf{M}}_{re}^{-1}{\mathbf{T}}^T\mathbf{M}\frac{\partial \mathbf{T}}{\partial {d}_k}{\mathbf{v}}_{re,0}-{\mathbf{M}}_{re}^{-1}{\mathbf{T}}^T\mathbf{M}\frac{\partial {\mathbf{v}}_0}{\partial {d}_k} $$
(58)

In (42), the item \( {\mathbf{X}}_{re}^T(0)\frac{\partial {\mathbf{P}}_{re}}{\partial {d}_k}{\mathbf{X}}_{re}(0) \) can be obtained by adjoint method mentioned in section 3.2.

$$ {\mathbf{X}}_{re}^T(0)\frac{\partial {\mathbf{P}}_{re}}{\partial {d}_k}{\mathbf{X}}_{re}(0)={\displaystyle \sum_{i=1}^{2M}{\displaystyle \sum_{j=1}^{2M}{\lambda}_{ij}^{re}{D}_{ij}^{re,k}}} $$
(59)

where M is number of DOFs in reduced model, \( {\mathbf{D}}^{re,k}=\frac{\partial {\mathbf{A}}_{re}^T}{\partial {d}_k}{\mathbf{P}}_{re}+{\mathbf{P}}_{re}\frac{\partial {\mathbf{A}}_{re}}{\partial {d}_k}+\frac{\partial {\mathbf{Q}}_{re}}{\partial {d}_k} \). Letting

$$ {\mathbf{S}}_{re}={\mathbf{X}}_{re}(0){\mathbf{X}}_{re}{(0)}^T $$
(60)

λ re can be obtained by solving one Lyapunov matrix equation

$$ {\mathbf{A}}_{re}{\boldsymbol{\uplambda}}^{re}+{\boldsymbol{\uplambda}}^{re}{\mathbf{A}}_{re}^T+{\mathbf{Z}}_{re}=0 $$
(61)

\( \frac{\partial {\mathbf{A}}_{re}}{\partial {d}_k} \) can be expressed as

$$ \frac{\partial {\mathbf{A}}_{re}}{\partial {d}_k}=\left[\begin{array}{cc}\hfill \mathbf{O}\hfill & \hfill \mathbf{O}\hfill \\ {}\hfill -\frac{\partial {\mathbf{M}}_{re}^{-1}}{\partial {d}_k}{\mathbf{K}}_{re}-{\mathbf{M}}_{re}^{-1}\frac{\partial {\mathbf{K}}_{re}}{\partial {d}_k}\hfill & \hfill -\frac{\partial {\mathbf{M}}_{re}^{-1}}{\partial {d}_k}{\mathbf{C}}_{re}-{\mathbf{M}}_{re}^{-1}\frac{\partial {\mathbf{C}}_{re}}{\partial {d}_k}\hfill \end{array}\right] $$
(62)

where

$$ \frac{\partial {\mathbf{K}}_{\mathrm{re}}}{\partial {d}_k}=\frac{\partial \left({\mathbf{T}}^T\mathbf{K}\mathbf{T}\right)}{\partial {d}_k}=\frac{\partial {\mathbf{T}}^T}{\partial {d}_k}\mathbf{K}\mathbf{T}+{\mathbf{T}}^T\frac{\partial \mathbf{K}}{\partial {d}_k}\mathbf{T}+{\mathbf{T}}^T\mathbf{K}\frac{\partial \mathbf{T}}{\partial {d}_k} $$
(63)
$$ \frac{\partial {\mathbf{C}}_{\mathrm{re}}}{\partial {d}_k}=\frac{\partial \left({\mathbf{T}}^T\mathbf{C}\mathbf{T}\right)}{\partial {d}_k}=\frac{\partial {\mathbf{T}}^T}{\partial {d}_k}\mathbf{C}\mathbf{T}+{\mathbf{T}}^T\frac{\partial \mathbf{C}}{\partial {d}_k}\mathbf{T}+{\mathbf{T}}^T\mathbf{C}\frac{\partial \mathbf{T}}{\partial {d}_k} $$
(64)

\( \frac{\partial {\mathbf{M}}_{\mathrm{re}}^{-1}}{\partial {d}_k} \) can be obtained by

$$ \frac{\partial {\mathbf{M}}_{\mathrm{re}}^{-1}}{\partial {d}_k}=-{\mathbf{M}}_{\mathrm{re}}^{-1}\frac{\partial {\mathbf{M}}_{re}}{\partial {d}_k}{\mathbf{M}}_{\mathrm{re}}^{-1} $$
(65)

where

$$ \frac{\partial {\mathbf{M}}_{\mathrm{re}}}{\partial {d}_k}=\frac{\partial \left({\mathbf{T}}^T\mathbf{M}\mathbf{T}\right)}{\partial {d}_k}=\frac{\partial {\mathbf{T}}^T}{\partial {d}_k}\mathbf{M}\mathbf{T}+{\mathbf{T}}^T\frac{\partial \mathbf{M}}{\partial {d}_k}\mathbf{T}+{\mathbf{T}}^T\mathbf{M}\frac{\partial \mathbf{T}}{\partial {d}_k} $$
(66)

The matrix \( \frac{\partial {\mathbf{Q}}_{re}}{\partial {d}_k} \) can be expressed as

$$ \frac{\partial {\mathbf{Q}}_{re}}{\partial {d}_k}=\frac{\partial {\mathbf{t}}^T\mathbf{Q}\mathbf{t}}{\partial {d}_k}=\frac{\partial {\mathbf{t}}^T}{\partial {d}_k}\mathbf{Q}\mathbf{t}+{\mathbf{t}}^T\frac{\partial \mathbf{Q}}{\partial {d}_k}\mathbf{t}+{\mathbf{t}}^T\mathbf{Q}\frac{\partial \mathbf{t}}{\partial {d}_k} $$
(67)
$$ \frac{\partial \mathbf{t}}{\partial {d}_k}=\left[\begin{array}{cc}\hfill \frac{\partial \mathbf{T}}{\partial {d}_k}\hfill & \hfill \mathbf{O}\hfill \\ {}\hfill \mathbf{O}\hfill & \hfill \frac{\partial \mathbf{T}}{\partial {d}_k}\hfill \end{array}\right] $$
(68)

And now, it remains to derive the solution of \( \frac{\partial \mathbf{T}}{\partial {d}_k} \) in terms of sensitivities of stiffness matrix. From (34), \( \frac{\partial \mathbf{T}}{\partial {d}_k} \) can be expressed as

$$ \frac{\partial \mathbf{T}}{\partial {d}_k}=\left\{\begin{array}{c}\hfill \mathbf{O}\hfill \\ {}\hfill -\frac{\partial {\mathbf{K}}_{ss}^{-1}}{\partial {d}_k}{\mathbf{K}}_{sm}-{\mathbf{K}}_{ss}^{-1}\frac{\partial {\mathbf{K}}_{sm}}{\partial {d}_k}\hfill \end{array}\right\} $$
(69)

where

$$ \frac{\partial {\mathbf{K}}_{ss}^{-1}}{\partial {d}_k}=-{\mathbf{K}}_{ss}^{-1}\frac{\partial {\mathbf{K}}_{ss}}{\partial {d}_k}{\mathbf{K}}_{ss}^{-1} $$
(70)

Note that \( \frac{\partial {\mathbf{K}}_{ss}}{\partial {d}_k} \) and \( \frac{\partial {\mathbf{K}}_{sm}}{\partial {d}_k} \) are part of \( \frac{\partial \mathbf{K}}{\partial {d}_k} \). For the case the design variable is dum** coefficient of the dumped spring, \( \frac{\partial {\mathbf{K}}_{ss}}{\partial {d}_k} \) and \( \frac{\partial {\mathbf{K}}_{sm}}{\partial {d}_k} \) is zero, the computational cost can be further reduced.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Cheng, G. & Wang, B.P. Adjoint methods of sensitivity analysis for Lyapunov equation. Struct Multidisc Optim 53, 225–237 (2016). https://doi.org/10.1007/s00158-015-1323-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1323-z

Keywords

Navigation