Log in

Map** and identification of CsSF4, a gene encoding a UDP-N-acetyl glucosamine-peptide N-acetylglucosaminyltransferase required for fruit elongation in cucumber (Cucumis sativus L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The short fruit length phenotype in sf4 is caused by a SNP in Csa1G665390, which encodes an O-linked N-acetylglucosamine (GlcNAc) transferase in cucumber.

Abstract

Cucumber fruit is an excellent resource for studying fruit morphology due to its fast growth rate and naturally abundant morphological variations. The regulatory mechanisms underlying plant organ size and shape are important and fundamental biological questions. In this study, a short-fruit length mutant, sf4, was identified from an ethyl methanesulfonate (EMS) mutagenesis population derived from the North China-type cucumber inbred line WD1. Genetic analysis indicated that the short fruit length phenotype of sf4 was controlled by a recessive nuclear gene. The SF4 locus was located in a 116.7-kb genomic region between the SNP markers GCSNP75 and GCSNP82 on chromosome 1. Genomic and cDNA sequences analysis indicated that a single G to A transition at the last nucleotide of Csa1G665390 intron 21 in sf4 changed the splice site from GT-AG to GT-AA, resulting in a 42-bp deletion in exon 22. Csa1G665390 is presumed to be a candidate gene, CsSF4 that encodes an O-linked N-acetylglucosamine (GlcNAc) transferase (OGT). CsSF4 was highly expressed in the leaves and male flowers of wild-type cucumbers. Transcriptome analysis indicated that sf4 had alterations in expression of many genes involved in hormone response pathways, cell cycle regulation, DNA replication, and cell division, suggesting that cell proliferation-associated gene networks regulate fruit development in cucumber. Identification of CsSF4 will contribute to elucidating the function of OGT in cell proliferation and to understanding fruit elongation mechanisms in cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Cong B, Liu JP, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. P Natl Acad Sci USA 99:13606–13611

    Article  CAS  Google Scholar 

  • Daviere JM, Achard P (2016) A pivotal role of DELLAs in regulating multiple hormone signals. Mol Plant 9:10–20

    Article  CAS  PubMed  Google Scholar 

  • Dong DL, Hart GW (1994) Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol. J Biol Chem 269:19321–19330

    Article  CAS  PubMed  Google Scholar 

  • Eguchi S, Tokunaga C, Hidayat S, Oshiro N, Yoshino K, Kikkawa U, Yonezawa K (2006) Different roles for the TOS and RAIP motifs of the translational regulator protein 4E-BP1 in the association with raptor and phosphorylation by mTOR in the regulation of cell size. Genes Cells 11:757–766

    Article  CAS  PubMed  Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59:2299–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Yu JQ (2010) Spatio-temporal changes in cell division, endoreduplication and expression of cell cycle-related genes in pollinated and plant growth substances-treated ovaries of cucumber. Plant Biol 12:98–107

    Article  CAS  PubMed  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, Thomas SG (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haltiwanger RS, Holt GD, Hart GW (1990) Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine: peptide beta-N-acetylglucosaminyltransferase. J Biol Chem 265:2563–2568

    Article  CAS  PubMed  Google Scholar 

  • Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022

    Article  CAS  PubMed  Google Scholar 

  • Hartweck LM, Scott CL, Olszewski NE (2002) Two O-linked N-acetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh. Have overlap** functions necessary for gamete and seed development. Genetics 161:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartweck LM, Genger RK, Grey WM, Olszewski NE (2006) SECRET AGENT and SPINDLY have overlap** roles in the development of Arabidopsis thaliana L. Heyn J Exp Bot 57:865–875

    Article  CAS  PubMed  Google Scholar 

  • Katsumi Higashi KHHE (1999) Histological analysis of fruit development between two melon (Cucumis melo L. reticulatus) genotypes setting a different size of fruit

  • Kreppel LK, Blomberg MA, Hart GW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272:9308–9315

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauxion J, Chevalier C, Gonzalez N (2021) Complex cellular and molecular events determining fruit size. Trends Plant Sci 26:1023–1038

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Liang X, Gao M, Liu H, Meng H, Weng Y, Cheng Z (2017) Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor Appl Genet 130:573–586

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Wang Y, McGregor C, Liu S, Luan F, Gao M, Weng Y (2019) Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theor Appl Genet 133:1–21

    Article  PubMed  Google Scholar 

  • Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2^ (-delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3:71–85

    PubMed  PubMed Central  Google Scholar 

  • Schob H, Kunz C, Meins FJ (1997) Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Mol Gen Genet 256:581–585

    Article  CAS  PubMed  Google Scholar 

  • Serrani JC, Fos M, Atarés A, García-Martínez JL (2007) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the CV micro-tom of tomato. J Plant Growth Regul 26:211–221

    Article  CAS  Google Scholar 

  • Shafi R, Iyer SP, Ellies LG, O’Donnell N, Marek KW, Chui D, Hart GW, Marth JD (2000) The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci USA 97:5735–5739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S, Takatsuto S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M (2006) The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J 48:390–402

    Article  CAS  PubMed  Google Scholar 

  • Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440

    Article  CAS  PubMed  Google Scholar 

  • Steiner E, Efroni I, Gopalraj M, Saathoff K, Tseng T, Kieffer M, Eshed Y, Olszewski N, Weiss D (2012) The Arabidopsis O -linked N-Acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 24:96–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19:2140–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Cao C, Zheng S, Zhang H, Liu P, Ge Q, Li J, Ren Z (2017) Transcriptomic analysis of short-fruit 1 (sf1) reveals new insights into the variation of fruit-related traits in Cucumis sativus. Sci Rep-UK 7:2950

    Article  Google Scholar 

  • Wang H, Sun J, Yang F, Weng Y, Chen P, Du S, Wei A, Li Y (2021) CsKTN1 for a katanin p60 subunit is associated with the regulation of fruit elongation in cucumber (Cucumis sativus L.). Theor Appl Genet 134:2429–2441

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Fu W, Wang Y, Qin X, Wang J, Li J, Lou Q, Chen J (2016) Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Sci Rep-UK 6:27496

    Article  CAS  Google Scholar 

  • **n T, Zhang Z, Li S, Zhang S, Li Q, Zhang Z, Huang S, Yang X (2019) Genetic regulation of ethylene dosage for cucumber fruit elongation. Plant Cell 31:1063–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ng L, Liu Y, Xu S, **ao J, Wang B, Deng H, Lu Z, Xu Y, Chong K (2018) Arabidopsis O-GlcNAc transferase SEC activates histone methyltransferase ATX1 to regulate flowering. EMBO J 37:e98115

    Article  PubMed  PubMed Central  Google Scholar 

  • Zentella R, Hu J, Hsieh WP, Matsumoto PA, Dawdy A, Barnhill B, Oldenhof H, Hartweck LM, Maitra S, Thomas SG, Cockrell S, Boyce M, Shabanowitz J, Hunt DF, Olszewski NE, Sun TP (2016) O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis. Genes Dev 30:164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Tanabe K, Wang S, Tamura F, Yoshida A, Matsumoto K (2006) The impact of cell division and cell enlargement on the evolution of fruit size in Pyrus pyrifolia. Ann Bot 98:537–543

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Sebolt AM, Sooriyapathirana SS, Wang D, Bink MC, Olmstead JW, Iezzoni AF (2010) Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6:25–36

    Article  CAS  Google Scholar 

  • Zhang Z, Wang B, Wang S, Lin T, Yang L, Zhao Z, Zhang Z, Huang S, Yang X (2020) Genome-wide target map** shows histone deacetylase complex1 regulates cell proliferation in cucumber fruit. Plant Physiol 182:167–184

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Jiang L, Che G, Pan Y, Li Y, Hou Y, Zhao W, Zhong Y, Ding L, Yan S, Sun C, Liu R, Yan L, Wu T, Li X, Weng Y, Zhang X (2019) A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. Plant Cell 31:1289–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Lihuang Zhu (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) for affording technical support for the experiment. This study was supported by the Shanghai Agriculture Applied Technology Development Program, China (2020-02-08-00-08-F0148), the National Natural Science Foundation of China (31972425), and the Project of Science and Technology Commission of Shanghai Municipality (18391900300).

Funding

The Shanghai Agriculture Applied Technology Development Program, China, 2020-02-08-00-08-F0148,Gang Wang, the National Natural Science Foundation of China, 31972425, Gang Wang, the Project of Science and Technology Commission of Shanghai Municipality, 18391900300, Gang Wang.

Author information

Authors and Affiliations

Authors

Contributions

KZ performed experiments and finished writing the manuscript. SP founded the experiments. HW, JP and DY participated in conducting the experiments, YC contributed to the data analysis. TX and DL contributed to the writing the manuscript. HH contributed to plant maintenance. RC and GW provided materials. GW captured images and contributed to manuscript development. GW, the corresponding authors, supervised all experiments and contributed the overall research direction.

Corresponding author

Correspondence to Gang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experiments complied with the current laws of the country in which they were performed.

Additional information

Communicated by Yiqun Weng.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 764 KB)

Supplementary file2 (DOCX 5985 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Yao, D., Chen, Y. et al. Map** and identification of CsSF4, a gene encoding a UDP-N-acetyl glucosamine-peptide N-acetylglucosaminyltransferase required for fruit elongation in cucumber (Cucumis sativus L.). Theor Appl Genet 136, 54 (2023). https://doi.org/10.1007/s00122-023-04246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04246-9

Navigation