Log in

With the dead under the mat: the zombie ant extended phenotype under a new perspective

  • Original Article
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Some parasitic fungi can increase fitness by modifying the behavior of their hosts. These behaviors are known as extended phenotypes because they favor parasitic gene propagation. Here, we studied three lineages of Ophiocordyceps, a fungus that infects ants, altering their conduct before death. According to fungal strategy, ants may die in leaf litter, with entwined legs in branches, under the moss mat, or biting plant tissue. It is critical for parasites that the corpses stay at these places because Ophiocordyceps exhibit iteroparity, possibly releasing spores in multiple life cycles. Thus, we assumed substrate cadaver permanence as a fungi reproductive proxy and corpse height as a proxy of cadaver removal. We hypothesize that biting vegetation and dying in higher places may increase the permanence of ant corpses while avoiding possible corpse predation on the forest floor. We monitored over a year more than 4000 zombie ants in approximately 15 km2 of undisturbed tropical forest in central Amazonia. Our results show a longer permanence of corpses with increasing ground height, suggesting that the parasites may have better chances of releasing spores and infecting new hosts at these places. We found that the zombie ants that last longer on the substrate die under the moss mat in tree trunks, not necessarily biting vegetation. The biting behavior appears to be the most derived and complex mechanism among Ophiocordyceps syndromes. Our results put these findings under a new perspective, proposing that seemingly less complex behavioral changes are ecologically equivalent and adaptative for other parasite lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen SB, Ferrari M, Evans HC, Elliot SL, Boomsma JJ, Hughes DP (2012) Disease dynamics in a specialized parasite of ant societies. PloS one 7(5):e36352. https://doi.org/10.1371/journal.pone.0036352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen SB, Gerritsma S, Yusah KM, Mayntz D, Hywel-Jones NL, Billen J, Boomsma JJ, Hughes DP (2009) The life of a dead ant: the expression of an adaptive extended phenotype. Am Nat 174:424–433

    Article  PubMed  Google Scholar 

  • Andriolli FS, Ishikawa NK, Vargas-Isla R, Cabral TS, de Bekker C, Baccaro FB (2019) Do zombie ant fungi turn their hosts into light seekers? Behav Ecol 30(3):609–616

    Article  Google Scholar 

  • Araújo JPM, Evans HC, Geiser DM, Mackay WP, Hughes DP (2015) Unraveling the diversity behind the Ophiocordyceps unilateralis (Ophiocordycipitaceae) complex: three new species of zombie-ant fungi from the Brazilian Amazon. Phytotaxa 220(3):224–238

    Article  Google Scholar 

  • Araújo JPM, Hughes DP (2017) The fungal spore: myrmecophilous Ophiocordyceps as a case study. The fungal community: its organization and role in the ecosystem, 4th edn. CRC Press

    Google Scholar 

  • Araújo JP, Hughes DP (2019) Zombie-ant fungi emerged from non-manipulating, beetle-infecting ancestors. Curr Biol 29(21):3735–8. https://doi.org/10.1016/j.cub.2019.09.004

    Article  CAS  PubMed  Google Scholar 

  • Araújo JPM, Evans HC, Kepler R, Hughes DP (2018) Zombie-ant fungi across continents: 15 new species and new combinations within Ophiocordyceps I. Myrmecophilous hirsutelloid species. Stud Mycol 90:1191e60

    Article  Google Scholar 

  • Araújo JPM, Moriguchi MG, Uchiyama S, Kinjo N, Matsuura Y (2021) Ophiocordyceps salganeicola, a parasite of social cockroaches in Japan and insights into the evolution of other closely related Blattodea-associated lineages. IMA Fungus 12:1–17

    Article  Google Scholar 

  • Baccaro FB, Feitosa RM, Fernandez F, Fernandes IO, Izzo TJ, Souza JP, Solar R (2015) Guia para os gêneros de formigas do Brasil. Manaus, INPA

  • Barbosa BC, Halfeld VR, de Araújo JPM, Maciel TT, Prezoto F (2015) Record of Ophiocordyceps unilateralis sensu lato, the zombie-ant fungus, parasitizing Camponotus in an urban fragment of Atlantic Rainforest in southeastern Brazil. Stud Neotropical Fauna Environ 50(1):21–23

    Article  Google Scholar 

  • Cardoso Neto JA, Leal LC, Baccaro FB (2019) Temporal and spatial gradients of humidity shape the occurrence and the behavioral manipulation of ants infected by entomopathogenic fungi in Central Amazon. Fungal Ecol 42:100871

    Article  Google Scholar 

  • Carroll CR, Janzen DH (1973) Ecology of foraging by ants. Annu Rev Ecol Syst 4(1):231–257

    Article  Google Scholar 

  • Chung TY, Sun PF, Kuo JI, Lee YI, Lin CC, Chou JY (2017) Zombie ant heads are oriented relative to solar cues. Fungal Ecol 25:22–28

    Article  Google Scholar 

  • Costa FV, Costa FRC, Magnusson WE, Franklin E, Zuanon J, Cintra R, Luizão F, Camargo JLC, Andrade A, Laurance WF, Baccaro F, Pereira Souza JL, Espírito-Santo H (2015) Synthesis of the first 10 years of long-term ecological research in Amazonian forest ecosystem - implications for conservation and management. Nat Conservação 13:3–14

    Article  Google Scholar 

  • Costa FRC, Zuanon JAS, Baccaro FB, Schietti J, Menger JS, Souza JLP, Borba GC, Esteban EJL, Bertin VM, Gerolamo CS et al (2020) Effects of climate change on central Amazonian forests: a two decades synthesis of monitoring tropical biodiversity. Oecol Australis 24:317–335

    Article  Google Scholar 

  • Cox D (1972) Regression models and life-tables. J Roy Stat Soc: Ser B (Methodol) 34(2):187–220

    Article  Google Scholar 

  • Dawkins R & Krebs JR (1979) Arms races between and within species. Proc R Soc Lond B 205(1161):489-511

  • Dawkins R (1982) The extended phenotype: the long reach of the gene. Oxford University Press, Oxford (UK)

    Google Scholar 

  • de Bekker C, Ohm RA, Loreto RG, Sebastian A, Albert I, Merrow M, Brachmann A, Hughes DP (2015) Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics 16:620

    Article  PubMed  PubMed Central  Google Scholar 

  • de Bekker C, Will I, Hughes DP, Brachmann A, Merrow M (2017) Daily rhythms and enrichment patterns in the transcriptome of the behavior-manipulating parasite Ophiocordyceps kimflemingiae. PLoS ONE 12:e0187170

    Article  PubMed  PubMed Central  Google Scholar 

  • de Bekker C, Das B (2022) Hijacking time: how Ophiocordyceps fungi could be using ant host clocks to manipulate behavior. Parasite Immunol 44:e12909

    Article  PubMed  PubMed Central  Google Scholar 

  • de Meeûs T, Michalakis Y, Renaud F (1998) Santa Rosalia revisited: or why are there so many kinds of parasites in ‘The Garden of Earthly Delights’? Parasitol Today 14:10–13

    Article  PubMed  Google Scholar 

  • Eldridge DJ, Guirado E, Reich PB et al (2023) The global contribution of soil mosses to ecosystem services. Nat Geosci 16:430–438

    Article  CAS  Google Scholar 

  • Evans HC (1982) Entomogenous fungi in the tropical forest ecosystems: an appraisal. Ecol Entomol 7:47–60

    Article  Google Scholar 

  • Evans HC, Elliot SL, Hughes DP (2011) Hidden diversity behind the zombie-ant fungus Ophiocordyceps unilateralis: four new species described from carpenter ants in Minas Gerais, Brazil. Plos One 6:e17024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans HC, Samson RA (1982) Cordyceps species and their anamorphs pathogenic on ants (Formicidae) in tropical forest ecosystems I. The Cephalotes (Formicinae) complex. Trans Br Mycol Soc 79:431e453

    Article  Google Scholar 

  • Evans HC, Samson RA (1984) Cordyceps species and their anamorphs pathogenic on ants (Formicidae) in tropical forest ecosystems. II. The Camponotus (Formicinae) complex. Trans Br Mycol Soc 79:127–150

    Article  Google Scholar 

  • Falesi IC, Cruz ES, Pereira FB, Lopes EC (1969) Os solos da área da Manaus-ltacoatiara. Instituto de Pesquisa e Experimentação Agropecuária do Norte (IPEAN). Sér Estudos Ensaios 1:116

    Google Scholar 

  • Gracia ES, de Bekker C, Hanks EM, Hughes DP (2018) Within the fortress: a specialized parasite is not discriminated against in a social insect society. PLoS ONE 13:e0193536

    Article  Google Scholar 

  • Griffiths HM, Ashton LA, Walker AE, Hasan F, Evans TA, Eggleton P, Parr CL (2018) Ants are the major agents of resource removal from tropical rainforests. J Anim Ecol 87(1):293–300

    Article  PubMed  Google Scholar 

  • Guillaumet JL (1987) Some structural and floristic aspects of the forest. pdf Experientia 43:241–251

  • Hirshfield MF, and Tinkle DW (1975) Natural selection and the evolution of reproductive effort. Proc Natl Acad Sci USA 72(6):2227–2231

  • Holldober B, Wilson EO (1990) Host tree selection by the neotropical ant Paraponera clavata (Hymenoptera Formicidae). Biotropica 22(2):213–214

    Article  Google Scholar 

  • Hughes DP, Andersen SB, Hywel-Jones NL, Himaman W, Billen J, Boomsma JJ (2011) Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol 11:1–10

    Article  Google Scholar 

  • Hughes DP, Araújo JP, Loreto R, Quevillon L, de Bekker C, Evans HC (2016) From so simple a beginning: the evolution of behavioral manipulation by fungi. Adv Genet 94:1–33

    PubMed  Google Scholar 

  • Imirzian N, Araújo JPM, Hughes DP (2020) A new zombie ant behavior unraveled: aggregating on tree trunks. J Invertebr Pathol 177:107499

    Article  PubMed  Google Scholar 

  • Kassambara A, Kosinski M and Biecek P (2021) Survminer: drawing survival curves using 'ggplot2'. R package version 0.4.9. https://CRAN.R-project.org/package=survminer. Accessed 13 June 2024

  • Kobmoo N, Mongkolsamrit S, Tasanathai K, Thanakitpipattana D, Luangsa-ard JJ (2012) Molecular phylogenies reveal host-specific divergence of Ophiocordyceps unilateralis sensu lato following its host ants. Mol Ecol 21:3022e3031

    Article  Google Scholar 

  • Kobmoo N, Mongkolsamrit S, Wutikhun T, Tasanathai K, Khonsanit A, Thanakitpipattana D, Luangsa-Ard JJ (2015) New species of Ophiocordyceps unilateralis, a ubiquitous pathogen of ants from Thailand. Fungal Biol 119(1):44–52

    Article  PubMed  Google Scholar 

  • Loreto RG, Araújo JPM, Kepler RM, Fleming KR, Moreau CS, Hughes DP (2018) Evidence for convergent evolution of host parasitic manipulation in response to environmental conditions. Evolution 72(10):2144–2155

    Article  PubMed  Google Scholar 

  • Loreto RG, Elliot SL, Freitas MLR, Pereira TM, Hughes DP (2014) Long-term disease dynamics for a specialized parasite of ant societies: a field study. PLoS ONE 9(8):e103516

    Article  PubMed  PubMed Central  Google Scholar 

  • MacKay WP, MacKay E (2010) The systematics and biology of the New World ants of the genus Pachycondyla (Hymenoptera: Formicidae). Edwin Mellen Press, Lewiston, New York

    Google Scholar 

  • Mongkolsamrit S, Kobmoo N, Tasanathai K, Khonsanit A, Noisripoom, et al (2012) Life cycle, host range and temporal variation of Ophiocordyceps unilateralis/Hirsutella formicarum on Formicine ants. J Invertebr Pathol 111(3):217–224

    Article  CAS  PubMed  Google Scholar 

  • Moore J (2002) Parasites and the behavior of animals. Oxford University Press, New York

    Book  Google Scholar 

  • Muenchow G (1986) Ecological use of failure time analysis. Ecology 67:246–250

    Article  Google Scholar 

  • Okamura B, Hartigan A, Naldoni J (2018) Extensive uncharted biodiversity: the parasite dimension. Integr Comp Biol 58:1132–1145

    PubMed  Google Scholar 

  • Ortiz CM, Fernández F (2011) Hormigas del género Dolichoderus Lund (Formicidae: Dolichoderinae). Universidad Nacional de Colombia, Bogotá

    Google Scholar 

  • Poulin R, Morand S (2000) The diversity of parasites. Q Rev Biol 75(3):277–293

    Article  CAS  PubMed  Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Princeton University Press, Princeton (NJ)

    Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Accessed 13 June 2024

  • Ribeiro MNG (1976) Aspectos climatológicos de Manaus. Acta Amazon 6(2):229–233

    Article  Google Scholar 

  • Sakolrak B, Blatrix R, Sangwanit U, Kobmoo N (2018) Experimental infection of the ant polyrhachis furcata with ophiocordyceps reveals specificity of behavioral manipulation. Fungal Ecol 33:122–124

    Article  Google Scholar 

  • Schmid-Hempel P (2011) Evolutionary parasitology. The integrated study of infections, immunology, ecology, and genetics. Oxford University Press, Oxford, UK

    Google Scholar 

  • Somavilla A, Bartholomay P, Soares M (2019) Behavior manipulation of Crabronidae and Pompilidae (Hymenoptera) by the entomopathogenic fungus Ophiocordyceps humbertii (Ascomycota: Hypocreales) in an Amazonian Rainforest, Brazil. Rev Bras Zoociências 20(2):1–7

    Article  Google Scholar 

  • Therneau T (2021) A package for survival analysis in R. R package version 3.2–11. https://CRAN.R-project.org/package=survival. Accessed 13 June  2024

  • Wickham et al (2019) Welcome to the tidyverse. J Open-Source Softw 4(43):1686. https://doi.org/10.21105/joss.01686

    Article  Google Scholar 

  • Wickham H (2016) Ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  • Will I, Linehan S, Jenkins DG, de Bekker C (2023) Natural history and ecological effects on the establishment and fate of Florida carpenter ant cadavers infected by the parasitic manipulator Ophiocordyceps camponoti-floridani. Funct Ecol 37(4):886–99. https://doi.org/10.1111/1365-2435.14224

    Article  CAS  Google Scholar 

  • Windsor DA (1998) Most of species on earth are parasites. Int J Parasitol 28:1939–1941

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to J. da Silva Lopes for fieldwork assistance, to L. O. Demarchi and S. P. de Lima for the helpful comments on the manuscript, and to N.M. Kinap for the study area figure. Also, we acknowledge the Brazilian Biodiversity Research Program (PPBio) and the National Institute for Amazonian Biodiversity Research (CENBAM). This work was only possible due to 20 years of research under the Brazilian LTER – CHAMADA PÚBLICA Nº 021/2020 – PELD/CNPq/FAPEAM.

Funding

This study was financed in part by the Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM)—POSGRAD/scholarship/ financial support and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The Fieldwork was financed by CHAMADA PÚBLICA Nº 021/2020—PELD/CNPq/FAPEAM. FBB receives continuous support by CNPq grant (#313986/2020–7).

Author information

Authors and Affiliations

Authors

Contributions

FSA and FBB contributed to the study’s conception and design. JACN conducted the data collection. FSA and FBB performed the analysis. JWM and FBB supervised the project and reviewed versions of the manuscript. All authors contributed, commented, and approved the submitted manuscript.

Corresponding author

Correspondence to Fernando Sarti Andriolli.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Sean O'Donnell

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andriolli, F.S., Cardoso Neto, J.A., de Morais, J.W. et al. With the dead under the mat: the zombie ant extended phenotype under a new perspective. Sci Nat 111, 33 (2024). https://doi.org/10.1007/s00114-024-01920-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-024-01920-w

Keywords

Navigation