Log in

Activation of NF-κB in B cell receptor signaling through Bruton’s tyrosine kinase-dependent phosphorylation of IκB-α

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The antigen-mediated triggering of B cell receptor (BCR) activates the transcription factor NF-κB that regulates the expression of genes involved in B cell differentiation, proliferation, and survival. The tyrosine kinase Btk is essentially required for the activation of NF-κB in BCR signaling through the canonical pathway of IKK-dependent phosphorylation and proteasomal degradation of IκB-α, the main repressor of NF-κB. Here, we provide the evidence of an additional mechanism of NF-κB activation in BCR signaling that is Btk-dependent and IKK-independent. In DeFew B lymphoma cells, the anti-IgM stimulation of BCR activated Btk and NF-κB p50/p65 within 0.5 min in absence of IKK activation and IκB-α degradation. IKK silencing did not affect the rapid activation of NF-κB. Within this short time, Btk associated and phosphorylated IκB-α at Y289 and Y305, and, concomitantly, p65 translocated from cytosol to nucleus. The mutant IκB-α Y289/305A inhibited the NF-κB activation after BCR triggering, suggesting that the phosphorylation of IκB-α at tyrosines 289 and 305 was required for NF-κB activation. In primary chronic lymphocytic leukemia cells, Btk was constitutively active and associated with IκB-α, which correlated with Y305-phosphorylation of IκB-α and increased NF-κB activity compared with healthy B cells. Altogether, these results describe a novel mechanism of NF-κB activation in BCR signaling that could be relevant for Btk-targeted therapy in B-lymphoproliferative disorders.

Key messages

  • Anti-IgM stimulation of BCR activates NF-κB p50/p65 within 30 s by a Btk-dependent and IKK-independent mechanism.

  • Btk associates and phosphorylates IκB-α at Y289 and Y305, promoting NF-κB activation.

  • In primary CLLs, the binding of Btk to IκB-α correlates with tyrosine phosphorylation of IκB-α and increased NF-κB activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen LF, Greene WC (2004) Sha** the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5:392–401

    Article  CAS  PubMed  Google Scholar 

  2. Hinz M, Scheidereit C (2014) The IkappaB kinase complex in NF-kappaB regulation and beyond. EMBO Rep 15:46–61

    Article  CAS  PubMed  Google Scholar 

  3. Liu F, **a Y, Parker AS, Verma IM (2012) IKK biology. Immunol Rev 246:239–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun SC (2017) The non-canonical NF-kappaB pathway in immunity and inflammation. Nat Rev Immunol 17:545–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Colomer C, Marruecos L, Vert A, Bigas A, Espinosa L (2017) NF-kappaB members left home: NF-kappaB-independent roles in cancer. Biomedicines 5(2):E26

  6. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 9:1586–1597

    Article  CAS  PubMed  Google Scholar 

  7. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa] B activity. Annu Rev Immunol 18:621–663

    Article  CAS  PubMed  Google Scholar 

  8. Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB (2003) Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem 278:24233–24241

    Article  CAS  PubMed  Google Scholar 

  9. Abu-Amer Y, Ross FP, McHugh KP, Livolsi A, Peyron JF et al (1998) Tumor necrosis factor-alpha activation of nuclear transcription factor-kappaB in marrow macrophages is mediated by c-Src tyrosine phosphorylation of Ikappa Balpha. J Biol Chem 273:29417–29423

    Article  CAS  PubMed  Google Scholar 

  10. Fan C, Li Q, Ross D, Engelhardt JF (2003) Tyrosine phosphorylation of I kappa B alpha activates NF kappa B through a redox-regulated and c-Src-dependent mechanism following hypoxia/reoxygenation. J Biol Chem 278:2072–2080

    Article  CAS  PubMed  Google Scholar 

  11. Imbert V, Rupec RA, Livolsi A, Pahl HL, Traenckner EB et al (1996) Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 86:787–798

    Article  CAS  PubMed  Google Scholar 

  12. Livolsi A, Busuttil V, Imbert V, Abraham RT, Peyron JF (2001) Tyrosine phosphorylation-dependent activation of NF-kappa B. Requirement for p56 LCK and ZAP-70 protein tyrosine kinases. Eur J Biochem 268:1508–1515

    Article  CAS  PubMed  Google Scholar 

  13. Herzog S, Reth M, Jumaa H (2009) Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 9:195–205

    Article  CAS  PubMed  Google Scholar 

  14. Hendriks RW, Yuvaraj S, Kil LP (2014) Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer 14:219–232

    Article  CAS  PubMed  Google Scholar 

  15. Hobeika E, Nielsen PJ, Medgyesi D (2015) Signaling mechanisms regulating B-lymphocyte activation and tolerance. J Mol Med (Berl) 93:143–158

    Article  CAS  Google Scholar 

  16. Hodson DJ, Turner M (2009) The role of PI3K signalling in the B cell response to antigen. Adv Exp Med Biol 633:43–53

    Article  CAS  PubMed  Google Scholar 

  17. Tarafdar A, Michie AM (2014) Protein kinase C in cellular transformation: a valid target for therapy? Biochem Soc Trans 42:1556–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R et al (2009) Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 228:58–73

    Article  CAS  PubMed  Google Scholar 

  19. Janda E, Palmieri C, Pisano A, Pontoriero M, Iaccino E, Falcone C, Fiume G, Gaspari M, Nevolo M, di Salle E, Rossi A, de Laurentiis A, Greco A, di Napoli D, Verheij E, Britti D, Lavecchia L, Quinto I, Scala G (2011) Btk regulation in human and mouse B cells via protein kinase C phosphorylation of IBtkgamma. Blood 117:6520–6531

    Article  CAS  PubMed  Google Scholar 

  20. Liu W, Quinto I, Chen X, Palmieri C, Rabin RL, Schwartz OM, Nelson DL, Scala G (2001) Direct inhibition of Bruton’s tyrosine kinase by IBtk, a Btk-binding protein. Nat Immunol 2:939–946

    Article  CAS  PubMed  Google Scholar 

  21. Spatuzza C, Schiavone M, Di Salle E, Janda E, Sardiello M et al (2008) Physical and functional characterization of the genetic locus of IBtk, an inhibitor of Bruton’s tyrosine kinase: evidence for three protein isoforms of IBtk. Nucleic Acids Res 36:4402–4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eswaran J, Sinclair P, Heidenreich O, Irving J, Russell LJ, Hall A, Calado DP, Harrison CJ, Vormoor J (2015) The pre-B-cell receptor checkpoint in acute lymphoblastic leukaemia. Leukemia 29:1623–1631

    Article  CAS  PubMed  Google Scholar 

  23. Seda V, Mraz M (2015) B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol 94:193–205

    Article  CAS  PubMed  Google Scholar 

  24. Roskoski R Jr (2016) Ibrutinib inhibition of Bruton protein-tyrosine kinase (BTK) in the treatment of B cell neoplasms. Pharmacol Res 113:395–408

    Article  CAS  PubMed  Google Scholar 

  25. Giordano V, De Falco G, Chiari R, Quinto I, Pelicci PG et al (1997) Shc mediates IL-6 signaling by interacting with gp130 and Jak2 kinase. J Immunol 158:4097–4103

    CAS  PubMed  Google Scholar 

  26. Mimmi S, Vecchio E, Iaccino E, Rossi M, Lupia A, Albano F, Chiurazzi F, Fiume G, Pisano A, Ceglia S, Pontoriero M, Golino G, Tassone P, Quinto I, Scala G, Palmieri C (2016) Evidence of shared epitopic reactivity among independent B-cell clones in chronic lymphocytic leukemia patients. Leukemia 30:2419–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Albano F, Chiurazzi F, Mimmi S, Vecchio E, Pastore A, Cimmino C, Frieri C, Iaccino E, Pisano A, Golino G, Fiume G, Mallardo M, Scala G, Quinto I (2018) The expression of inhibitor of bruton’s tyrosine kinase gene is progressively up regulated in the clinical course of chronic lymphocytic leukaemia conferring resistance to apoptosis. Cell Death Dis 9:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fiume G, Scialdone A, Rizzo F, De Filippo MR, Laudanna C, et al. (2016) IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells. Int J Mol Sci 17(11):E1848

  29. Pisano A, Ceglia S, Palmieri C, Vecchio E, Fiume G, de Laurentiis A, Mimmi S, Falcone C, Iaccino E, Scialdone A, Pontoriero M, Masci FF, Valea R, Krishnan S, Gaspari M, Cuda G, Scala G, Quinto I (2015) CRL3IBTK regulates the tumor suppressor Pdcd4 through ubiquitylation coupled to proteasomal degradation. J Biol Chem 290:13958–13971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Puca A, Fiume G, Palmieri C, Trimboli F, Olimpico F, Scala G, Quinto I (2007) IkappaB-alpha represses the transcriptional activity of the HIV-1 tat transactivator by promoting its nuclear export. J Biol Chem 282:37146–37157

    Article  CAS  PubMed  Google Scholar 

  31. Capasso A, Cerchia C, Di Giovanni C, Granato G, Albano F et al (2015) Ligand-based chemoinformatic discovery of a novel small molecule inhibitor targeting CDC25 dual specificity phosphatases and displaying in vitro efficacy against melanoma cells. Oncotarget 6:40202–40222

    PubMed  PubMed Central  Google Scholar 

  32. Palmieri C, Trimboli F, Puca A, Fiume G, Scala G, Quinto I (2004) Inhibition of HIV-1 replication in primary human monocytes by the IkappaB-alphaS32/36A repressor of NF-kappaB. Retrovirology 1:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schiavone M, Fiume G, Caivano A, de Laurentiis A, Falcone C, Masci FF, Iaccino E, Mimmi S, Palmieri C, Pisano A, Pontoriero M, Rossi A, Scialdone A, Vecchio E, Andreozzi C, Trovato M, Rafay J, Ferko B, Montefiori D, Lombardi A, Morsica G, Poli G, Quinto I, Pavone V, de Berardinis P, Scala G (2012) Design and characterization of a peptide mimotope of the HIV-1 gp120 bridging sheet. Int J Mol Sci 13:5674–5699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vitagliano L, Fiume G, Scognamiglio PL, Doti N, Cannavo R et al (2011) Structural and functional insights into IkappaB-alpha/HIV-1 tat interaction. Biochimie 93:1592–1600

    Article  CAS  PubMed  Google Scholar 

  35. Fiume G, Rossi A, de Laurentiis A, Falcone C, Pisano A, Vecchio E, Pontoriero M, Scala I, Scialdone A, Masci FF, Mimmi S, Palmieri C, Scala G, Quinto I (2013) Eukaryotic initiation factor 4H is under transcriptional control of p65/NF-kappaB. PLoS One 8:e66087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fiume G, Scialdone A, Albano F, Rossi A, Tuccillo FM et al (2015) Impairment of T cell development and acute inflammatory response in HIV-1 tat transgenic mice. Sci Rep 5:13864

    Article  PubMed  PubMed Central  Google Scholar 

  37. de Laurentiis A, Gaspari M, Palmieri C, Falcone C, Iaccino E, Fiume G, Massa O, Masullo M, Tuccillo FM, Roveda L, Prati U, Fierro O, Cozzolino I, Troncone G, Tassone P, Scala G, Quinto I (2011) Mass spectrometry-based identification of the tumor antigen UN1 as the transmembrane CD43 sialoglycoprotein. Mol Cell Proteomics 10:M111 007898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D’Agostino M, Risselada HJ, Endter LJ, Comte-Miserez V, Mayer A (2018) SNARE-mediated membrane fusion arrests at pore expansion to regulate the volume of an organelle. EMBO J 37:e99193

    Article  CAS  PubMed  Google Scholar 

  39. Savarese M, Spinelli E, Gandolfo F, Lemma V, Di Fruscio G et al (2014) Familial exudative vitreoretinopathy caused by a homozygous mutation in TSPAN12 in a cystic fibrosis infant. Ophthalmic Genet 35:184–186

    Article  CAS  PubMed  Google Scholar 

  40. Takada Y, Aggarwal BB (2004) TNF activates Syk protein tyrosine kinase leading to TNF-induced MAPK activation, NF-kappaB activation, and apoptosis. J Immunol 173:1066–1077

    Article  CAS  PubMed  Google Scholar 

  41. Gallagher D, Gutierrez H, Gavalda N, O’Keeffe G, Hay R, Davies AM (2007) Nuclear factor-kappaB activation via tyrosine phosphorylation of inhibitor kappaB-alpha is crucial for ciliary neurotrophic factor-promoted neurite growth from develo** neurons. J Neurosci 27:9664–9669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ (2000) Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 164:2200–2206

    Article  CAS  PubMed  Google Scholar 

  43. Frenzel LP, Claus R, Plume N, Schwamb J, Konermann C, Pallasch CP, Claasen J, Brinker R, Wollnik B, Plass C, Wendtner CM (2011) Sustained NF-kappaB activity in chronic lymphocytic leukemia is independent of genetic and epigenetic alterations in the TNFAIP3 (A20) locus. Int J Cancer 128:2495–2500

    Article  CAS  PubMed  Google Scholar 

  44. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388:548–554

    Article  CAS  PubMed  Google Scholar 

  45. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866

    Article  CAS  PubMed  Google Scholar 

  46. Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z et al (1997) Identification and characterization of an IkappaB kinase. Cell 90:373–383

    Article  CAS  PubMed  Google Scholar 

  47. Esparza-Lopez J, Medina-Franco H, Escobar-Arriaga E, Leon-Rodriguez E, Zentella-Dehesa A et al (2013) Doxorubicin induces atypical NF-kappaB activation through c-Abl kinase activity in breast cancer cells. J Cancer Res Clin Oncol 139:1625–1635

    Article  CAS  PubMed  Google Scholar 

  48. Kawai H, Nie L, Yuan ZM (2002) Inactivation of NF-kappaB-dependent cell survival, a novel mechanism for the proapoptotic function of c-Abl. Mol Cell Biol 22:6079–6088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh S, Aggarwal BB (1995) Protein-tyrosine phosphatase inhibitors block tumor necrosis factor-dependent activation of the nuclear transcription factor NF-kappa B. J Biol Chem 270:10631–10639

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the following grants: Ministero della Salute RF-2010-2306943 (to G. S.), MIUR-POR CALABRIA FSE 2007/2013 (to G. S.), MIUR-PRIN 2012CK5RPF (to G. S.), MIUR-PRIN 2006052835_004 and MIUR-PRIN 2012CK5RPF_002 (to I. Q.), and MIUR-Finanziamento individuale attività base di ricerca (to G. F.). S. M. was supported by a fellowship from the Fondazione Italiana per la Ricerca sul Cancro.

Author information

Authors and Affiliations

Authors

Contributions

M.P. and G.F. analyzed the physical and functional interactions of Btk and IκB-α in the DeFew and CLL cells; M.P. generated the appropriate mutants; E.V. performed gene expression microarray and ChIP; F.A., A.P., E.I., and S.M. produced expression vectors; V.A. and E.G. gave technical advice for flow cytometry; C.C., A.A., and M.M. performed some Western blottings; I.Q., G.S., and G.F. conceived the experimental plan and wrote the manuscript.

Corresponding authors

Correspondence to Giuseppe Fiume or Ileana Quinto.

Ethics declarations

Ethics statements

Experiments involving human subjects were approved by the Italian Regional “Calabria” Ethics Committee (Protocol N. 75, 23/03/17), in accordance with the ethical and safety rules and guidelines provided by the relevant Italian laws (art. 4–5 of D.lgs 116/92, DD.MM. of 29/09/1995 and 26/04/2000), and in accordance with the ethical guidelines of the European Community Council (directive n. 86/609/ECC). Blood samples from healthy donors or CLL patients were obtained upon written and oral informed consent from the participants to the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Marilena Pontoriero and Giuseppe Fiume are co-first authors

Electronic supplementary material

ESM 1

(DOCX 352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pontoriero, M., Fiume, G., Vecchio, E. et al. Activation of NF-κB in B cell receptor signaling through Bruton’s tyrosine kinase-dependent phosphorylation of IκB-α. J Mol Med 97, 675–690 (2019). https://doi.org/10.1007/s00109-019-01777-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01777-x

Keywords

Navigation