Log in

Effect of applying intermittent force with and without vibration on orthodontic tooth movement

Auswirkung der Anwendung intermittierender Kraft mit und ohne Vibration auf die kieferorthopädische Zahnbewegung

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to determine whether orthodontic tooth movement could be accelerated by applying an intermittent force protocol. It also examined the effect of applying additional vibrational forces on orthodontic tooth movement and root resorption rates.

Methods

This study included 24 patients (16 males and 8 females) who underwent orthodontic treatment involving first premolar extraction and distal movement of the canines in the maxilla. A Hycon device (Adenta GmbH, Gilching, Germany) was used for canine distalization in all patients. The patients were randomly divided into two groups: one group received 20 min of vibration per day using the AcceleDent device (OrthoAccel Technologies, Inc., Bellaire, TX, USA), while the other group received no vibration. In addition, a split-mouth design was used: an activation-only force protocol was applied on one side, and an intermittent activation–deactivation–activation (ADA) protocol was applied on the other. The duration required for complete canine tooth distalization on each side was calculated. In addition, the effect of vibration on the orthodontically induced root resorption was examined.

Results

The intermittent ADA protocol significantly accelerated orthodontic tooth movement compared to the activation-only protocol (p < 0.05). The application of additional vibration did not affect the orthodontic tooth movement rate (p > 0.05).

Conclusions

Using a Hycon device and following an ADA protocol provided significantly faster canine distalization than the activation-only protocol (p < 0.05). This intermittent force method proved very effective in closing the spaces. However, vibration did not significantly affect the orthodontic tooth movement rate (p > 0.05).

Zusammenfassung

Zielsetzung

In dieser Studie sollte ermittelt werden, ob die kieferorthopädische Zahnbewegung durch Anwendung eines intermittierenden Kraftprotokolls beschleunigt werden kann. Außerdem wurde untersucht, wie sich die Anwendung zusätzlicher Vibrationskräfte auf die kieferorthopädische Zahnbewegung und die Wurzelresorptionsraten auswirkt.

Methoden

Die Studie umfasste 24 Patienten (16 männliche, 8 weibliche), die sich einer kieferorthopädischen Behandlung mit Extraktion der ersten Prämolaren und Distalbewegung der Eckzähne im Oberkiefer unterzogen. Bei allen Patienten wurde eine Hycon-Apparatur (Adenta GmbH, Gilching, Deutschland) zur Distalisierung der Eckzähne verwendet. Die Patienten wurden randomisiert in 2 Gruppen eingeteilt: Eine Gruppe erhielt 20 min Vibration pro Tag mit der AcceleDent-Apparatur (OrthoAccel Technologies, Inc., Bellaire/TX, USA), die andere Gruppe erhielt keine Vibration. Außerdem kam ein Split-mouth-Design zum Einsatz: Auf der einen Seite wurde ein reines Aktivierungskraftprotokoll angewendet, auf der anderen Seite ein intermittierendes ADA(Aktivierung-Deaktivierung-Aktivierung)-Protokoll. Die Dauer, die für eine vollständige Distalisierung des Eckzahns auf jeder Seite erforderlich war, wurde berechnet. Darüber hinaus wurde die Auswirkung von Vibrationen auf die kieferorthopädisch induzierte Wurzelresorption untersucht.

Ergebnisse

Das intermittierende ADA-Protokoll beschleunigte die kieferorthopädische Zahnbewegung im Vergleich zum reinen Aktivierungsprotokoll signifikant (p < 0,05). Die Anwendung von zusätzlicher Vibration hatte keinen Einfluss auf die kieferorthopädische Zahnbewegungsrate (p > 0,05).

Schlussfolgerungen

Die Behandlung mit einer Hycon-Apparatur und die Einhaltung eines ADA-Protokolls führte zu einer signifikant schnelleren Distalisierung der Eckzähne als das reine Aktivierungsprotokoll (p < 0,05). Diese intermittierende Kraftmethode erwies sich als sehr effektiv beim Schließen der Lücken. Vibration hatte allerdings keinen signifikanten Einfluss auf die kieferorthopädische Zahnbewegungsrate (p > 0,05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6

Similar content being viewed by others

References

  1. Kannan S, Fassul S, Singh AK, Arora N, Malhotra A, Saini N (2019) Effectiveness and importance of powered tooth brushes in tooth movement. J Family Med Prim Care 8(7):2478. https://doi.org/10.4103/jfmpc.jfmpc_352_19

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gkantidis N, Mistakidis I, Kouskoura T, Pandis N (2014) Effectiveness of non-conventional methods for accelerated orthodontic tooth movement: a systematic review and meta-analysis. J Dent 42(10):1300–1319. https://doi.org/10.1016/j.jdent.2014.07.013

    Article  PubMed  Google Scholar 

  3. Uribe F, Padala S, Allareddy V, Nanda R (2014) Patients’, parents’, and orthodontists’ perceptions of the need for and costs of additional procedures to reduce treatment time. Am J Orthod Dentofacial Orthop 145(4):S65–S73. https://doi.org/10.1016/j.ajodo.2013.12.015

    Article  PubMed  Google Scholar 

  4. Nishimura M, Chiba M, Ohashi T, Sato M, Shimizu Y, Igarashi K et al (2008) Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofacial Orthop 133(4):572–583. https://doi.org/10.1016/j.ajodo.2006.01.046

    Article  PubMed  Google Scholar 

  5. Uzuner FD, Darendeliler N (2013) Dentoalveolar surgery techniques combined with orthodontic treatment: a literature review. Eur J Dent 7(2):257. https://doi.org/10.4103/1305-7456.110201

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU (2004) Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med 35(2):117–120. https://doi.org/10.1002/lsm.20076

    Article  PubMed  Google Scholar 

  7. Davidovitch Z, Finkelson MD, Steigman S, Shanfeld JL, Montgomery PC, Korostoff E (1980) Electric currents, bone remodeling, and orthodontic tooth movement: II. Increase in rate of tooth movement and periodontal cyclic nucleotide levels by combined force and electric current. Am J Orthod Dentofacial Orthop 77(1):33–47. https://doi.org/10.1016/0002-9416(80)90222-5

    Article  Google Scholar 

  8. Pavlin D, Anthony R, Raj V, Gakunga PT (2015) Cyclic loading (vibration) accelerates tooth movement in orthodontic patients: a double-blind, randomized controlled trial. Semin Orthod. https://doi.org/10.1053/j.sodo.2015.06.005

    Article  Google Scholar 

  9. Miles P, Fisher E (2016) Assessment of the changes in arch perimeter and irregularity in the mandibular arch during initial alignment with the AcceleDent Aura appliance vs no appliance in adolescents: a single-blind randomized clinical trial. Am J Orthod Dentofacial Orthop 150(6):928–936. https://doi.org/10.1016/j.ajodo.2016.07.016

    Article  PubMed  Google Scholar 

  10. Woodhouse NR, DiBiase AT, Johnson N, Slipper C, Grant J, Alsaleh M et al (2015) Supplemental vibrational force during orthodontic alignment: a randomized trial. J Dent Res 94(5):682–689

    Article  PubMed  Google Scholar 

  11. DiBiase AT, Woodhouse NR, Papageorgiou SN, Johnson N, Slipper C, Grant J et al (2016) Effect of supplemental vibrational force on orthodontically induced inflammatory root resorption: a multicenter randomized clinical trial. Am J Orthod Dentofacial Orthop 150(6):918–927. https://doi.org/10.1016/j.ajodo.2016.06.025

    Article  PubMed  Google Scholar 

  12. Miles P, Fisher E, Pandis N (2018) Assessment of the rate of premolar extraction space closure in the maxillary arch with the AcceleDent Aura appliance vs no appliance in adolescents: A single-blind randomized clinical trial. Am J Orthod Dentofacial Orthop 153(1):8–14. https://doi.org/10.1016/j.ajodo.2017.08.007

    Article  PubMed  Google Scholar 

  13. Yadav S, Dobie T, Assefnia A, Kalajzic Z, Nanda R (2016) The effect of mechanical vibration on orthodontically induced root resorption. Angle Orthod 86(5):740–745. https://doi.org/10.2319/090615-599.1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shankar D, Verma N, Mudgal P (2019) “Hycon device” A choice for orthodontic space closure: a clinical study. J Adv Med Dent Sci Res 7(8):165–168. https://doi.org/10.21276/jamdsr

    Article  Google Scholar 

  15. Mathew R, Acharya SS, Prabhakar R, Karthikeyan M, Saravanan R, Rajvikram N (2015) Comparison of individual canine retraction using Hycon device and nickel titanium closed coil spring: In vivo study. J Indian Orthod Soc 49(3):145–151

    Article  Google Scholar 

  16. Mclaughlin RP, Kalha AS, Schuetz W (2005) An alternative method of space closure: the Hycon device. J Clin Orthod 39(8):474

    PubMed  Google Scholar 

  17. Kachiwala VA, Kalha AS, Vigneshwaran J (2007) Space closure using the Hycon device. A case report. Aust Orthod J 23(1):72

    PubMed  Google Scholar 

  18. Iyano H, Himuro T, Ryu T, Fukui K, McLaughlin RP (2006) Anterior retraction using a preadjusted edgewise appliance with interrupted orthodontic force generated by a screw device. Orthod Waves 65(1):31–42

    Article  Google Scholar 

  19. Reitan K (1957) Some factors determining the evaluation of forces in orthodontics. Am J Orthod Dentofacial Orthop 43(1):32–45

    Article  Google Scholar 

  20. Reitan K (1964) Effects of force magnitude and direction of tooth movement on different alveolar bone types. Angle Orthod 34(4):244–255

    Google Scholar 

  21. Levander E, Malmgren O, Eliasson S (1994) Evaluation of root resorption in relation to two orthodontic treatment regimes. A clinical experimental study. Eur J Orthod 16(3):223–228. https://doi.org/10.1093/ejo/16.3.223

    Article  PubMed  Google Scholar 

  22. Rygh P (1977) Orthodontic root resorption studied by electron microscopy. Angle Orthod 47(1):1–16

    PubMed  Google Scholar 

  23. Igarashi K, Miyoshi K, Shinoda H, Saeki S, Mitani H (1998) Diurnal variation in tooth movement in response to orthodontic force in rats. Am J Orthod Dentofacial Orthop 114(1):8–14. https://doi.org/10.1016/s0889-5406(98)70231-8

    Article  PubMed  Google Scholar 

  24. Karsli E, Yagci A (2018) A new system that allows modification of the pressure occurring in blood vessels at force application during orthodontic tooth movement. J Biotechnol 280:24

    Article  Google Scholar 

  25. Leethanakul C, Suamphan S, Jitpukdeebodintra S, Thongudomporn U, Charoemratrote C (2016) Vibratory stimulation increases interleukin‑1 beta secretion during orthodontic tooth movement. Angle Orthod 86(1):74–80

    Article  PubMed  Google Scholar 

  26. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res 39:175–191

    Article  Google Scholar 

  27. Lippold C, Kirschneck C, Schreiber K, Abukiress S, Tahvildari A, Moiseenko T, Danesh G (2015) Methodological accuracy of digital and manual model analysis in orthodontics—a retrospective clinical study. Comput Biol Med 62:103–109. https://doi.org/10.1016/j.compbiomed.2015.04.012

    Article  PubMed  Google Scholar 

  28. Sharpe W, Reed B, Subtelny JD, Polson A (1987) Orthodontic relapse, apical root resorption, and crestal alveolar bone levels. Am J Orthod Dentofacial Orthop 91(3):252–258. https://doi.org/10.1016/0889-5406(87)90455-0

    Article  PubMed  Google Scholar 

  29. Woodhouse NR, DiBiase AT, Papageorgiou SN, Johnson N, Slipper C, Grant J et al (2015) Supplemental vibrational force does not reduce pain experience during initial alignment with fixed orthodontic appliances: a multicenter randomized clinical trial. Sci Rep 5(1):1–9. https://doi.org/10.1038/srep17224

    Article  Google Scholar 

  30. Ahmed ZSH, Ahmed NSH, Ghaib NH (2015) The effect of AcceleDent® device on both gingival health condition and levels of salivary interleukin-1-βeta and tumor necrosis factors-alpha in patients under fixed orthodontic treatment. J Baghdad Coll Dent 325(3129):1–8

    Google Scholar 

  31. Lee K‑J, Park Y‑C, Yu H‑S, Choi S‑H, Yoo Y‑J (2004) Effects of continuous and interrupted orthodontic force on interleukin-1β and prostaglandin E2 production in gingival crevicular fluid. Am J Orthod Dentofacial Orthop 125(2):168–177. https://doi.org/10.1016/j.ajodo.2003.03.006

    Article  PubMed  Google Scholar 

  32. Nakao K, Goto T, Gunjigake K, Konoo T, Kobayashi S, Yamaguchi K (2007) Intermittent force induces high RANKL expression in human periodontal ligament cells. J Dent Res 86(7):623–628. https://doi.org/10.1177/154405910708600708

    Article  PubMed  Google Scholar 

  33. Taha K, Conley RS, Arany P, Warunek S, Al-Jewair T (2020) Effects of mechanical vibrations on maxillary canine retraction and perceived pain: a pilot, single-center, randomized-controlled clinical trial. Odontology. https://doi.org/10.1007/s10266-019-00480-0

    Article  PubMed  Google Scholar 

  34. Orton-Gibbs S, Kim N (2015) Clinical experience with the use of pulsatile forces to accelerate treatment. J Clin Orthod 49(9):557–573

    PubMed  Google Scholar 

  35. Oz AA, Arici N, Arici S (2012) The clinical and laboratory effects of bracket type during canine distalization with sliding mechanics. Angle Orthod 82(2):326–332. https://doi.org/10.2319/032611-215.1

    Article  PubMed  Google Scholar 

  36. Kojima Y, Fukui H (2005) Numerical simulation of canine retraction by sliding mechanics. Am J Orthod Dentofacial Orthop 127(5):542–551. https://doi.org/10.1016/j.ajodo.2004.12.007

    Article  PubMed  Google Scholar 

  37. Storey E (1952) Force in orthodontics and its relation to tooth movement. Australian J Dent 56:11–18

    Google Scholar 

  38. Burstone CJ, Koenig HA (1976) Optimizing anterior and canine retraction. Am J Orthod 70(1):1–19. https://doi.org/10.1016/0002-9416(76)90257-8

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Erciyes University Scientific Research Projects Coordination Unit (Project code: TDH-2019-8701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Yagci.

Ethics declarations

Conflict of interest

O. Yildiz, A. Yagci and N. Hashimli declare that they have no competing interests.

Ethical standards

Approval was granted by the Ethics Committee of Erciyes University School of Medicine (Kayseri, Turkey; approval number: 2018/337). This study was registered at ClinicalTrials.gov (ID: NCT03968263). Informed consent was obtained from all individual participants included in the study. Participants aged ≥ 18 years personally signed the consent form, whereas consent was obtained from the parents of participants aged < 18 years.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, O., Yagci, A. & Hashimli, N. Effect of applying intermittent force with and without vibration on orthodontic tooth movement. J Orofac Orthop (2023). https://doi.org/10.1007/s00056-023-00488-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00056-023-00488-w

Keywords

Schlüsselwörter

Navigation