Log in

Design, synthesis and biological evaluation of novel 2,4,6-trisubstituted quinazoline derivatives as potential antitumor agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this study, a series of novel 2,4,6-trisubstituted quinazoline derivatives were designed, synthesized and biologically evaluated their antiproliferative activity against four human cancer cell lines (Eca-109, A549, PC-3 and MGC-803). The most of designed compounds showed considerable antiproliferative activity against the tested four cancer cell lines, while compound 28g displayed the best antiproliferative activity with the IC50 values of 1.95 μM and 2.46 μM against MGC-803 cells and Eca-109 cells, respectively. Further mechanism studies indicated that 28g significantly inhibited the cell migration and colony formation of MGC-803 cells. Besides, 28g also dose-dependently induced cellular apoptosis and cell cycle arrest at S phase in MGC-803 cells. Overall, all these studies suggested that 28g has the potential to act as a valuable lead compound for the development of antitumor agents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Chen SJ, Wang SC, Chen YC. The immunotherapy for colorectal cancer, lung cancer and pancreatic cancer. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms222312836

  3. Hadiloo K, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int. 2023;23:86 https://doi.org/10.1186/s12935-023-02923-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang S, Wang X, Wang Y, Wang Y, Fang C, Wang Y, et al. Deciphering and advancing CAR T-cell therapy with single-cell sequencing technologies. Mol Cancer. 2023;22:80 https://doi.org/10.1186/s12943-023-01783-1.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chu DT, Nguyen TT, Tien NLB, Tran DK, Jeong JH, Anh PG, et al. Recent progress of stem cell therapy in cancer treatment: molecular mechanisms and potential applications. Cells. 2020;9. https://doi.org/10.3390/cells9030563

  6. Akbar Samadani A, Keymoradzdeh A, Shams S, Soleymanpour A, Elham Norollahi S, Vahidi S, et al. Mechanisms of cancer stem cell therapy. Clin Chim Acta. 2020;510:581–92. https://doi.org/10.1016/j.cca.2020.08.016.

    Article  CAS  PubMed  Google Scholar 

  7. Gogola S, Rejzer M, Bahmad HF, Alloush F, Omarzai Y, Poppiti R. Anti-cancer stem-cell-targeted therapies in prostate cancer. Cancers (Basel). 2023;15. https://doi.org/10.3390/cancers15051621

  8. Li Z, Qin T, Li Z, Zhao X, Zhang X, Zhao T, et al. Discovery of quinazoline derivatives as a novel class of potent and in vivo efficacious LSD1 inhibitors by drug repurposing. Eur J Med Chem. 2021;225:113778. https://doi.org/10.1016/j.ejmech.2021.113778.

    Article  CAS  PubMed  Google Scholar 

  9. Das D, Hong J. Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur J Med Chem. 2019;170:55–72. https://doi.org/10.1016/j.ejmech.2019.03.004.

    Article  CAS  PubMed  Google Scholar 

  10. Gatadi S, Gour J, Shukla M, Kaul G, Das S, Dasgupta A, et al. Synthesis of 1,2,3-triazole linked 4(3H)-Quinazolinones as potent antibacterial agents against multidrug-resistant Staphylococcus aureus. Eur J Med Chem. 2018;157:1056–67. https://doi.org/10.1016/j.ejmech.2018.08.070.

    Article  CAS  PubMed  Google Scholar 

  11. Faisal M, Saeed A. Chemical insights into the synthetic Chemistry of quinazolines: recent advances. Front Chem. 2020;8:594717. https://doi.org/10.3389/fchem.2020.594717.

    Article  CAS  PubMed  Google Scholar 

  12. Lv L, Maimaitiming M, Huang Y, Yang J, Chen S, Sun Y, et al. Discovery of quinazolin-4(3H)-one derivatives as novel AChE inhibitors with anti-inflammatory activities. Eur J Med Chem. 2023;254:115346. https://doi.org/10.1016/j.ejmech.2023.115346.

    Article  CAS  PubMed  Google Scholar 

  13. Mohammadi AA, Taheri S, Shisheboran S, Ahdenov R, Mohammadi-Khanaposhtani M, Darjani PS, et al. Novel spiro[indene-1,2’-quinazolin]-4’(3’H)-one derivatives as potent anticonvulsant agents: one-pot synthesis, in vivo biological evaluation, and molecular docking studies. J Biochem Mol Toxicol. 2023;37:e23234. https://doi.org/10.1002/jbt.23234.

  14. Bansal R, Malhotra A. Therapeutic progression of quinazolines as targeted chemotherapeutic agents. Eur J Med Chem. 2021;211:113016. https://doi.org/10.1016/j.ejmech.2020.113016.

    Article  CAS  PubMed  Google Scholar 

  15. Ashton TD, Ngo A, Favuzza P, Bullen HE, Gancheva MR, Romeo O, et al. Property activity refinement of 2-anilino 4-amino substituted quinazolines as antimalarials with fast acting asexual parasite activity. Bioorg Chem. 2021;117:105359. https://doi.org/10.1016/j.bioorg.2021.105359.

    Article  CAS  PubMed  Google Scholar 

  16. Auti PS, George G, Paul AT. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv. 2020;10:41353–92. https://doi.org/10.1039/d0ra06642g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang X, Nielsen DA, Domingo CB, Shorter DI, Nielsen EM, Kosten TR. Pharmacogenetics of Dopamine β-Hydroxylase in cocaine dependence therapy with doxazosin. Addict Biol. 2019;24:531–8. https://doi.org/10.1111/adb.12611.

    Article  CAS  PubMed  Google Scholar 

  18. Blair HA. Belumosudil: first approval. Drugs. 2021;81:1677–82. https://doi.org/10.1007/s40265-021-01593-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ismail RSM, Ismail NSM, Abuserii S, Abou El Ella DA. Recent advances in 4-aminoquinazoline based scaffold derivatives targeting EGFR kinases as anticancer agents. Future J Pharm Sci. 2016;2:9–19. https://doi.org/10.1016/j.fjps.2016.02.001.

    Article  Google Scholar 

  20. Dungo RT, Keating GM. Afatinib: first global approval. Drugs. 2013;73:1503–15. https://doi.org/10.1007/s40265-013-0111-6.

    Article  CAS  PubMed  Google Scholar 

  21. Cheah CY, Fowler NH. Idelalisib in the management of lymphoma. Blood. 2016;128:331–6. https://doi.org/10.1182/blood-2016-02-702761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao L, Fan T, Shi Z, Ding C, Zhang C, Yuan Z, et al. Design, synthesis and evaluation of novel ErbB/HDAC multitargeted inhibitors with selectivity in EGFR(T790M) mutant cell lines. Eur J Med Chem. 2021;213:113173. https://doi.org/10.1016/j.ejmech.2021.113173.

    Article  CAS  PubMed  Google Scholar 

  23. Yang L, Zhang W, Qiu Q, Su Z, Tang M, Bai P, et al. Discovery of a series of hydroxamic acid-based microtubule destabilizing agents with potent antitumor activity. J Med Chem. 2021;64:15379–401. https://doi.org/10.1021/acs.jmedchem.1c01451.

    Article  CAS  PubMed  Google Scholar 

  24. Wang K, Zhong H, Li N, Yu N, Wang Y, Chen L, et al. Discovery of novel anti-breast-cancer inhibitors by synergistically antagonizing microtubule polymerization and aryl hydrocarbon receptor expression. J Med Chem. 2021;64:12964–77. https://doi.org/10.1021/acs.jmedchem.1c01099.

    Article  CAS  PubMed  Google Scholar 

  25. Li W, Yin Y, Shuai W, Xu F, Yao H, Liu J, et al. Discovery of novel quinazolines as potential anti-tubulin agents occupying three zones of colchicine domain. Bioorg Chem. 2019;83:380–90. https://doi.org/10.1016/j.bioorg.2018.10.027.

    Article  CAS  PubMed  Google Scholar 

  26. Cai J, Li L, Hong KH, Wu X, Chen J, Wang P, et al. Discovery of 4-aminoquinazoline–urea derivatives as Aurora kinase inhibitors with antiproliferative activity. Bioorg Med Chem. 2014;22:5813–23. https://doi.org/10.1016/j.bmc.2014.09.029.

    Article  CAS  PubMed  Google Scholar 

  27. Lakkaniga NR, Zhang L, Belachew B, Gunaganti N, Frett B, Li HY. Discovery of SP-96, the first non-ATP-competitive Aurora Kinase B inhibitor, for reduced myelosuppression. Eur J Med Chem. 2020;203:112589. https://doi.org/10.1016/j.ejmech.2020.112589.

    Article  CAS  PubMed  Google Scholar 

  28. Bolleddula J, DeMent K, Driscoll JP, Worboys P, Brassil PJ, Bourdet DL. Biotransformation and bioactivation reactions of alicyclic amines in drug molecules. Drug Metab Rev. 2014;46:379–419. https://doi.org/10.3109/03602532.2014.924962.

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Zhang C, Zhang X, Yan J, Wang J, Jiang Q, et al. Design, synthesis and biological evaluation of tetrahydroquinoline-based reversible LSD1 inhibitors. Eur J Med Chem. 2020;194:112243. https://doi.org/10.1016/j.ejmech.2020.112243.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Sun Y, Huang H, Wang X, Wu T, Yin W, et al. Identification of novel indole derivatives as highly potent and efficacious LSD1 inhibitors. Eur J Med Chem. 2022;239:114523. https://doi.org/10.1016/j.ejmech.2022.114523.

    Article  CAS  PubMed  Google Scholar 

  31. Talele TT. Acetylene Group, friend or foe in medicinal Chemistry. J Med Chem. 2020;63:5625–63. https://doi.org/10.1021/acs.jmedchem.9b01617.

    Article  CAS  PubMed  Google Scholar 

  32. Ma LY, Zheng YC, Wang SQ, Wang B, Wang ZR, Pang LP, et al. Design, synthesis, and structure-activity relationship of novel LSD1 inhibitors based on pyrimidine-thiourea hybrids as potent, orally active antitumor agents. J Med Chem. 2015;58:1705–16. https://doi.org/10.1021/acs.jmedchem.5b00037.

    Article  CAS  PubMed  Google Scholar 

  33. Long L, Wang YH, Zhuo JX, Tu ZC, Wu R, Yan M, et al. Structure-based drug design: synthesis and biological evaluation of quinazolin-4-amine derivatives as selective Aurora A kinase inhibitors. Eur J Med Chem. 2018;157:1361–75. https://doi.org/10.1016/j.ejmech.2018.08.053.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang B, Liu Z, **a S, Liu Q, Gou S. Design, synthesis and biological evaluation of sulfamoylphenyl-quinazoline derivatives as potential EGFR/CAIX dual inhibitors. Eur J Med Chem. 2021;216:113300. https://doi.org/10.1016/j.ejmech.2021.113300.

    Article  CAS  PubMed  Google Scholar 

  35. Li P, Liu Y, Yang H, Liu HM. Design, synthesis, biological evaluation and structure-activity relationship study of quinazolin-4(3H)-one derivatives as novel USP7 inhibitors. Eur J Med Chem. 2021;216:113291. https://doi.org/10.1016/j.ejmech.2021.113291.

    Article  CAS  PubMed  Google Scholar 

  36. Krapf MK, Gallus J, Namasivayam V, Wiese M. 2,4,6-substituted quinazolines with extraordinary inhibitory potency toward ABCG2. J Med Chem. 2018;61:7952–76. https://doi.org/10.1021/acs.jmedchem.8b01011.

    Article  CAS  PubMed  Google Scholar 

  37. Krapf MK, Gallus J, Spindler A, Wiese M. Synthesis and biological evaluation of quinazoline derivatives - A SAR study of novel inhibitors of ABCG2. Eur J Med Chem. 2019;161:506–25. https://doi.org/10.1016/j.ejmech.2018.10.026.

    Article  CAS  PubMed  Google Scholar 

  38. Cai CY, Teng QX, Murakami M, Ambudkar SV, Chen ZS, Korlipara VL. Design, Synthesis and biological evaluation of quinazolinamine derivatives as breast cancer resistance protein and p-glycoprotein inhibitors with improved metabolic stability. Biomolecules. 2023;13. https://doi.org/10.3390/biom13020253

  39. Duff D, Long A. Roles for RACK1 in cancer cell migration and invasion. Cell Signal. 2017;35:250–5. https://doi.org/10.1016/j.cellsig.2017.03.005.

    Article  CAS  PubMed  Google Scholar 

  40. Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer. 2021;124:102–14. https://doi.org/10.1038/s41416-020-01149-0.

    Article  PubMed  Google Scholar 

  41. Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147:742–58. https://doi.org/10.1016/j.cell.2011.10.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8:603–19. https://doi.org/10.18632/aging.100934.

    Article  CAS  PubMed  Google Scholar 

  43. Berthenet K, Castillo Ferrer C, Fanfone D, Popgeorgiev N, Neves D, Bertolino P, et al. Failed apoptosis enhances melanoma cancer cell aggressiveness. Cell Rep. 2020;31:107731. https://doi.org/10.1016/j.celrep.2020.107731.

    Article  CAS  PubMed  Google Scholar 

  44. Ammirante M, Bahmanyar S, Correa MD, Grant V, Hansen J, Horn EJ, et al. Substituted 3-((3-aminophenyl)amino)piperidine-2,6-dione compounds, compositions thereof, and methods of treatment therewith. WO/2020/132016.

  45. Mukhopadhyay S, Barak DS, Batra S. TBHP as methyl source under metal-free aerobic conditions to synthesize quinazolin-4(3h)-ones and quinazolines by oxidative amination of C(sp3)-H bond. Eur J Org Chem. 2018;2018:2784–94. https://doi.org/10.1002/ejoc.201800495.

    Article  CAS  Google Scholar 

  46. Jian Y, Forbes HE, Hulpia F, Risseeuw MDP, Caljon G, Munier-Lehmann H, et al. 2-((3,5-Dinitrobenzyl)thio)quinazolinones: potent antimycobacterial agents activated by deazaflavin (F420)-dependent nitroreductase. Ddn J Med Chem. 2021;64:440–57. https://doi.org/10.1021/acs.jmedchem.0c01374.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U21A20416).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingnan Zhu, Hongmin Liu or Qiurong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, T., Chi, L. et al. Design, synthesis and biological evaluation of novel 2,4,6-trisubstituted quinazoline derivatives as potential antitumor agents. Med Chem Res 32, 1832–1850 (2023). https://doi.org/10.1007/s00044-023-03114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03114-x

Keywords

Navigation