Log in

Gromov–Hausdorff stability of global attractors for the 3D Navier–Stokes equations with dam**

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is concerned with the Gromov–Hausdorff stability of global attractors for the 3D Navier–Stokes equations with dam** under variations of the domain, which describes the complexity of the dynamics of the motion of a fluid flow. The Gromov–Hausdorff stability accounts for the Gromov–Hausdorff distance between two global attractors which may lie in disjoint phase spaces, as well as the stability of global attractors under perturbations of the domain. The same phase space cannot be used for the convergence via the Gromov–Hausdorff distance, which can be overcome, following Lee et al.(2020), by introducing a Banach space defined on a variable domain without “pull-backing” the perturbed system onto the original domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ai, C., Tan, Z.: Gromov–Hausdorff stability of global attractors for 3D Brinkman–Forchheimer equations. Math. Methods Appl. Sci. 45(17), 1117–1133 (2022)

    Article  MathSciNet  Google Scholar 

  2. Aragão, G.S., Pereira, A.L., Pereira, M.C.: Attractors for a nonlinear parabolic problem with terms concentrating on the boundary. J. Differ. Equ. 26, 871–888 (2014)

    Article  MathSciNet  Google Scholar 

  3. Aragão-Costa, E.R., Figueroa-López, R.N., Langa, J.A., Lozada-Cruz, G.: Topological structural stability of partial differential equations on projected spaces. J. Differ. Equ. 30, 687–718 (2018)

    Article  MathSciNet  Google Scholar 

  4. Arbieto, A., Morales, C.A.: Topological stability from Gromov–Hausdorff viewpoint. Discrete Contin. Dyn. Syst. 37, 3531–3544 (2017)

    Article  MathSciNet  Google Scholar 

  5. Arrieta, J.M., Carvalho, A.N.: Spectral convergence and nonlinear dynamics of reaction–diffusion equations under perturbations of the domain. J. Differ. Equ. 199, 143–178 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. Arrieta, J.M., Carvalho, A.N., Lozada-Cruz, G.: Dynamics in dumbbell domains. I. Continuity of the set of equilibria. J. Differ. Equ. 231, 551–597 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Arrieta, J.M., Carvalho, A.N., Lozada-Cruz, G.: German Dynamics in dumbbell domains. II. The limiting problem. J. Differ. Equ. 247, 174–202 (2009)

    Article  ADS  Google Scholar 

  8. Arrieta, J.M., Carvalho, A.N., Lozada-Cruz, G.: German Dynamics in dumbbell domains. III. Continuity of attractors. J. Differ. Equ. 247, 225–259 (2009)

    Article  ADS  Google Scholar 

  9. Barbosa, P.S., Pereira, A.L.: Continuity of attractors for \(C^1\) perturbations of a smooth domain. Electron. J. Differ. Equ. 97, 31 (2020)

    Google Scholar 

  10. Barbosa, P.S., Pereira, A.L., Pereira, M.C.: Continuity of attractors for a family of \(C^1\) perturbations of the square. Ann. Mat. Pura Appl. 196, 1365–1398 (2017)

    Article  MathSciNet  Google Scholar 

  11. Cai, X., Jiu, Q.: Weak and strong solutions for the incompressible Navier–Stokes equations with dam**. J. Math. Anal. Appl. 343(2), 799–809 (2008)

    Article  MathSciNet  Google Scholar 

  12. Capiński, M., Cutland, N.J.: Attractors for three-dimensional Navier–Stokes equations. Proc. R. Soc. Lond. Ser. A 453, 2413–2426 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. Chepyzhov, V.V.: Trajectory attractors for non-autonomous dissipative 2D Euler equations. Discrete Contin. Dyn. Syst. 20(3), 811–832 (2015)

    MathSciNet  Google Scholar 

  14. Chepyzhov, V.V., Vishik, M.I.: Evolution equations and their trajectory attractors. J. Math. Pures Appl. 76, 664–913 (1997)

    Article  MathSciNet  Google Scholar 

  15. Chepyzhov, V.V., Vishik, M.I., Zelik, S.V.: Strong trajectory attractors for dissipative Euler equations. J. Math. Pures Appl. 96, 395–407 (2011)

    Article  MathSciNet  Google Scholar 

  16. Cheskidov, A., Foias, C.: On global attractors of the 3D Navier–Stokes equations. J. Differ. Equ. 231, 714–754 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Cheskidov, A., Lu, S.: Uniform global attractors for the nonautonomous 3D Navier–Stokes equations. Adv. Math. 267, 277–306 (2014)

    Article  MathSciNet  Google Scholar 

  18. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes equations and turbulence. In: Encyclopedia of Mathematics and its Applications, vol. 83. Cambridge University Press, Cambridge (2001)

  19. Henry, D.B.: Perturbation of the Boundary Value Problems. Cambridge University Press (2005)

  20. Hopf, E.: Üeber die Anfangswertaufgable für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MathSciNet  Google Scholar 

  21. Kalantarov, V., Zelik, S.: Smooth attractors for the Brinkman–Forchheimer equations with fast growing nonlinearities. Commun. Pure Appl. Anal. 11(5), 2037–2054 (2012)

    Article  MathSciNet  Google Scholar 

  22. Kapustyan, A.V., Valero, J.: Weak and strong attractors for the 3D Navier–Stokes system. J. Differ. Equ. 240, 249–278 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, Mathematics and Its Applications, Revised 2nd edn., pp. XVIII+224. Gordon and Breach, New York-London-Paris-Montreux-Tokyo-Melbourne

  24. Ladyzhenskaya, O.A.: New equations for the description of the motions of viscous incompressible fluids and global solvability for their boundary value problems. Tr. Mat. Inst. Steklov. 102, 85–104 (1967)

    MathSciNet  Google Scholar 

  25. Ladyzhenskaya, O.A.: Dynamical system generated by the Navier–Stokes equations. Sov. Phys. Dokl. 17, 9–647 (1973)

    Google Scholar 

  26. J. Lee, Gromov–Hausdorff stability of reaction-diffusion equations with Neumann boundary conditions under perturbations of the domain. J. Math. Anal. Appl. 496 (2021)

  27. Lee, J., Nguyen, N.T.: Gromov–Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Commun. Pure Appl. Anal. 20(3), 1263–1296 (2021)

    Article  MathSciNet  Google Scholar 

  28. Lee, J., Nguyen, N., Toi, V.M.: Gromov–Hausdorff stability of global attractors of reaction-diffusion equations under perturbations of the domain. J. Differ. Equ. 269, 125–147 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. Leray, J.: Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  30. Lions, J.L.: Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaire. Dunod, Gauthier-Villars, Paris (1969)

    Google Scholar 

  31. Lions, P.L.: Mathematical Topics in Fluid Dynamics, vol. 1: incompressible Models. Oxford lecture series in mathematics and its applications. 3. Oxford, Clarendon Press. xiv, 237 p. (1996)

  32. Pereira, A.L., Pereira, M.C.: Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain. J. Differ. Equ. 239, 343–370 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. Raugel, G., Sell, G.R.: Navier–Stokes equation on thin 3D domain. I. Global attractors and global regularity of solutions. J. Am. Math. Soc. 6(3), 503–568 (1993)

    Google Scholar 

  34. Robinson, J.C.: Attractors and finite-dimensional behavior in the 2D Navier–Stokes equations. ISRN Math. Anal. 2013, 291823 (2013)

    Google Scholar 

  35. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The Three-Dimensional Navier–Stokes Equations. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  36. Rosa, R.M.S.: Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations. J. Differ. Equ. 229, 257–269 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  37. Sell, G.R.: Global attractors for the three-dimensional Navier–Stokes equations. J. Dyn. Differ. Equ. 8, 1–33 (1996)

    Article  MathSciNet  Google Scholar 

  38. Sohr, H.: The Navier–Stokes equations. An elementary functional analytic approach. In: Basel Textbooks: Birkhäuser Advanced Texts. Birkhäuser Verlag, Basel (2001)

  39. Song, X., Hou, Y.: Attractors for the three-dimensional incompressible Navier–Stokes equations with dam**. Discrete Contin. Dyn. Syst. 31(1), 239–252 (2011)

    Article  MathSciNet  Google Scholar 

  40. Straughan, B.: Stability and Wave Motion in Porous Media. Springer (2008)

  41. Temam, R.: Navier–Stokes equations, theory and numerical analysis. In: Studies in Mathematics and its Applications, vol. 2. North-Holland Publishing Co., Amsterdam-New York (1979)

  42. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer, Berlin (1997)

    Book  Google Scholar 

  43. Yang, X.-G., Yang, R.: Asymptotic stability of 3D Navier–Stokes equations with dam**. Appl. Math. Lett. 116, 107012 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank an anonymous referee for her/his careful reading of the paper and useful comments. This work was partially supported by the Cultivation Fund of Henan Normal University (No. 2020PL17), Henan Overseas Expertise Introduction Center for Discipline Innovation (No. CXJD2020003), and Key Project of Henan Education Department (No. 22A110011). The authors also acknowledge fruitful discussion with Dr. **aona Cui from Henan Normal University on this topic which leads to an improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Miranville.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Z., Yang, XG., Miranville, A. et al. Gromov–Hausdorff stability of global attractors for the 3D Navier–Stokes equations with dam**. Z. Angew. Math. Phys. 75, 1 (2024). https://doi.org/10.1007/s00033-023-02146-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02146-y

Keywords

Mathematics Subject Classification

Navigation