Log in

Well-posedness for moving interfaces in anisotropic plasmas

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study the local-in-time well-posedness for an interface that separates an anisotropic plasma from a vacuum. The plasma flow is governed by the ideal Chew–Goldberger–Low (CGL) equations, which are the simplest collisionless fluid model with anisotropic pressure. The vacuum magnetic and electric fields are supposed to satisfy the pre-Maxwell equations. The plasma and vacuum magnetic fields are tangential to the interface. This represents a nonlinear hyperbolic-elliptic coupled problem with a characteristic free boundary. By a suitable symmetrization of the linearized CGL equations, we reduce the linearized free boundary problem to a problem analogous to that in isotropic magnetohydrodynamics (MHD). This enables us to prove the local existence and uniqueness of solutions to the nonlinear free boundary problem under the same non-collinearity condition for the plasma and vacuum magnetic fields on the initial interface required by Secchi and Trakhinin (Nonlinearity 27:105–169, 2014) in isotropic MHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alinhac, S.: Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Commun. Partial Differ. Eqs. 14(2), 173–230 (1989)

    Article  MATH  Google Scholar 

  2. Blokhin, A.M., Krymskikh, D.A.: Symmetrization of equations of magnetohydrodynamics with anisotropic pressure. Boundary value problems for partial differential equations. Collect. Sci. Works, Novosibirsk, 3–19 (1990) (in Russian)

  3. Blokhin, A., Trakhinin, Yu.: Stability of Strong Discontinuities in Magnetohydrodynamics and Electrohydrodynamics. Nova Science Publishers, New York (2003)

    MATH  Google Scholar 

  4. Blokhin, A.M., Trakhinin, Yu.L.: On the stability of shock waves in magnetohydrodynamics with anisotropic pressure. Sib. Math. J. 34(6), 1005–1016 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S.: Initial boundary value problems for quasilinear symmetric hyperbolic systems with characteristic boundary. Chin. Ann. Math. 3(2), 223–232 (1982). (In Chinese)

    MathSciNet  MATH  Google Scholar 

  6. Chen, S.: Initial boundary value problems for quasilinear symmetric hyperbolic systems with characteristic boundary. Front. Math. China 2(1), 87–102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chew, G.F., Goldberger, M.L., Low, F.E.: The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. Roy. Soc. London Ser. A. 236(1204), 112–118 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, S., Zank, G.P., Li, X., Guo, F.: Energy dissipation and entropy in collisionless plasmas. Phys. Rev. E 101(3), 033208 (2020)

    Article  Google Scholar 

  9. Godunov, S.K.: Symmetrization of magnetohydrodynamics equations. Chislennye Metody Mekhaniki Sploshnoi Sredy, Novosibirsk 3, 26–34 (1972). (In Russian)

    Google Scholar 

  10. Goedbloed, H., Keppens, R., Poedts, S.: Magnetohydrodynamics of Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2019)

    Book  MATH  Google Scholar 

  11. Gu, X., Wang, Y.: On the construction of solutions to the free-surface incompressible ideal magnetohydrodynamic equations. J. Math. Pures Appl. 9(128), 1–41 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hao, C.: On the motion of free interface in ideal incompressible MHD. Arch. Ration. Mech. Anal. 224(2), 515–553 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hao, C., Luo, T.: A priori estimates for free boundary problem of incompressible inviscid magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 212(3), 805–847 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hao, C., Luo, T.: Ill-posedness of free boundary problem of the incompressible ideal MHD. Comm. Math. Phys. 376(1), 259–286 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hao, C., Luo, T.: Well-posedness for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations. J. Differ. Equ. 299, 542–601 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hunana, P., Tenerani, A., Zank, G.P., Khomenko, E., Goldstein, M.L., Webb, G.M., Cally, P.S., Collados, M., Velli, M., Adhikari, L.: An introductory guide to fluid models with anisotropic temperatures Part 1. CGL description and collisionless fluid hierarchy. J. Plasma Phys. 85(6), 205850602 (2019)

    Article  Google Scholar 

  17. Hudson, P.D.: Rotational discontinuities in an anisotropic plasma. Planet. Space Sci. 19(12), 1693–1699 (1971)

    Article  Google Scholar 

  18. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Everitt, W.N. (eds.) Spectral Theory and Differential Equations. Lecture Notes in Math., Vol. 448. pp. 25–70. Springer, Berlin (1975)

  19. Morando, A., Secchi, P., Trebeschi, P.: Regularity of solutions to characteristic initial-boundary value problems for symmetrizable systems. J. Hyperb. Differ. Equ. 6(4), 753–808 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Morando, A., Trakhinin, Y., Trebeschi, P.: Well-posedness of the linearized plasma-vacuum interface problem in ideal incompressible MHD. Quart. Appl. Math. 72(3), 549–587 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Secchi, P.: Some properties of anisotropic Sobolev spaces. Arch. Math. (Basel) 75(3), 207–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Secchi, P.: On the Nash–Moser iteration technique. In: Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M. (eds.) Recent developments of mathematical fluid mechanics, pp. 443–457. Birkhäuser, Basel (2016)

    Chapter  Google Scholar 

  23. Secchi, P., Trakhinin, Y.: Well-posedness of the linearized plasma-vacuum interface problem. Interfaces Free Bound. 15(3), 323–357 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Secchi, P., Trakhinin, Y.: Well-posedness of the plasma-vacuum interface problem. Nonlinearity 27(1), 105–169 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun, Y., Wang, W., Zhang, Z.: Well-posedness of the plasma-vacuum interface problem for ideal incompressible MHD. Arch. Ration. Mech. Anal. 234(1), 81–113 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Trakhinin, Y.: Existence of compressible current-vortex sheets: variable coefficients linear analysis. Arch. Ration. Mech. Anal. 177(3), 331–366 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Trakhinin, Y.: The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 191(2), 245–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Trakhinin, Y.: On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD. J. Differ. Eqs. 249(10), 2577–2599 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Trakhinin, Y., Wang, T.: Well-posedness of free boundary problem in non-relativistic and relativistic ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 239(2), 1131–1176 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Trakhinin, Y., Wang, T.: Well-posedness for moving interfaces with surface tension in ideal compressible MHD. SIAM J. Math. Anal. 54(6), 5888–5921 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vol’pert, A.I., Khudyaev, S.I.: On the Cauchy problem for composite systems of nonlinear differential equations. Math. USSR-Sb. 16(4), 517–544 (1972)

    Article  MATH  Google Scholar 

  32. Webb, G.M., Anco, S.C., Meleshko, S.V., Zank, G.P.: Action principles and conservation laws for Chew–Goldberger–Low anisotropic plasmas. J. Plasma Phys. 88(4), 835880402 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.T wrote the main manuscript text and obtained all the results described in the work.

Corresponding author

Correspondence to Yuri Trakhinin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was carried out at the Sobolev Institute of Mathematics, under a state contract (Project No. FWNF-2022-0008).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trakhinin, Y. Well-posedness for moving interfaces in anisotropic plasmas. Z. Angew. Math. Phys. 74, 142 (2023). https://doi.org/10.1007/s00033-023-02035-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02035-4

Keywords

Mathematics Subject Classification

Navigation