Log in

Non-autonomous maximal regularity for fractional evolution equations

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider the problem of maximal regularity for the semilinear non-autonomous fractional equations

$$\begin{aligned} B^\alpha u(t)+A(t)u(t)=F(t,u),\, t \text {-a.e}. \end{aligned}$$

Here \(B^\alpha \) denotes the Riemann–Liouville fractional derivative of order \(\alpha \in (0,1)\) w.r.t. time and the time- dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert space \({\mathcal {H}}.\) We prove maximal \(L^p\)-regularity results and other regularity properties for the solution of the above equation under minimal regularity assumptions on the forms and the inhomogeneous term F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Achache, Maximal regularity for the damped wave equations, J. Elliptic Parabol. Equ., 6 (2020), 835-870.

    Article  MathSciNet  Google Scholar 

  2. M. Achache, E. M. Ouhabaz, Non-autonomous right and left multiplicative perturbations and maximal regularity, Studia Math., 242 (1) (2018), 1-30.

    Article  MathSciNet  Google Scholar 

  3. M. Achache, E.M. Ouhabaz, Lions’ maximal regularity problem with \(H^{\frac{1}{2}}\)-regularity in time, J. Differential Equations, 266 (2019), 3654-3678.

    Article  MathSciNet  Google Scholar 

  4. E. Bazhlekova, Fractional evolution equations in Banach spaces., Technische Universiteit Eindhoven, (2001).

  5. G. Dore, A. Venni, On the closedness of the sum of two closed operators. Math. Z. 196 (1987), 189-201. MR 88m:47072.

  6. H. Donga, D. Kimb, Lp-estimates for time fractional parabolic equations with coefficients measurable in time, Advances in Mathematics, 345 (2019), 289-345.

    Article  MathSciNet  Google Scholar 

  7. H. Donga, D. Kimb, Lp-estimates for time fractional parabolic equations in divergence form with measurable coefficients, Journal of Functional Analysis, 278 (2020), 108338.

    Article  MathSciNet  Google Scholar 

  8. D. Guidetti, On maximal regularity for the Cauchy-Dirichlet parabolic problem with fractional time derivative, J. Math. Anal. Appl. 476 (2019), 637-664.

    Article  MathSciNet  Google Scholar 

  9. G. H. Hardy, J. E. Littlewood, Some properties of fractional integrals, I. Math. Z. 27 (1) (1928), 565-606.

    Article  MathSciNet  Google Scholar 

  10. T. Hytönen, J. V. Neerven, M. Veraar, L. Weis, (2016) UMD spaces. In: Analysis in Banach Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics, vol 63. Springer, Cham.

  11. T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan 13 (1961), 246-274.

    Article  MathSciNet  Google Scholar 

  12. I. Kim, K. H. Kim, S. Lim, An \(L_q(L_p)\)-theory for the time fractional evolution equations with variable coefficients, Adv. Math. 306 (2017), 123-176.

    Article  MathSciNet  Google Scholar 

  13. A. Kubica, K. Ryszewska, M. Yamamoto, Introduction to a theory of time-fractional differential equations, Springer, Tokyo, 2020.

    Book  Google Scholar 

  14. A. Kubica, M. Yamamoto, Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fractional Calculus and Applied Analysis, 21 (2018), 276-311.

    MATH  Google Scholar 

  15. J. L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications: Vol. II. Die Grundlehren der mathematischen Wissenschaften, Band 182. Springer-Verlag, New York-Heidelberg, 1972.

  16. A. Lunardi, Interpolation theory. Second. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa, 2009.

  17. S. Monniaux, J. Prüss, A theorem of the dore-venni type for noncummuting operators, transactions of the american mathematical society, vol. 349, N. 12, P. 4787-4814.

  18. E. M. Ouhabaz, Analysis of Heat Equations on Domains. London Mathematical Society Mono-graphs Series, vol. 31, Princeton University Press, Princeton NJ, 2005.

  19. I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.

    MATH  Google Scholar 

  20. J. Prüss. Maximal regularity for abstract parabolic problems with inhomogeneous boundary data. Math. Bohemica 127 (2002), 311-317.

    Article  MathSciNet  Google Scholar 

  21. J. Simon, Compact sets in the space \(L_p(0, T ;B)\), Ann. Mat. Pura Appl. (4) 146 (1987), 65-96.

  22. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (second ed.), Johann Ambrosius Barth, Heidelberg, 1995.

    MATH  Google Scholar 

  23. R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialaj Ekvacioj, 52 (2009), 1-18.

    Article  MathSciNet  Google Scholar 

  24. R. Zacher, Maximal regularity of type \(L^p\) for abstract parabolic Volterra equations. J. Evol. Equ. 5 (2005), 79-103.

    Article  MathSciNet  Google Scholar 

  25. R. Zacher, Quasilinear parabolic integro-differential equations with nonlinear boundary conditions, Differential Integral Equations 19 (2006), 1129-1156.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achache Mahdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdi, A. Non-autonomous maximal regularity for fractional evolution equations. J. Evol. Equ. 22, 48 (2022). https://doi.org/10.1007/s00028-022-00808-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-022-00808-4

Keywords

Navigation