Log in

Coupled Ocean–Atmosphere Summer Intraseasonal Oscillation over the Bay of Bengal

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study shows the active role of subsurface ocean temperature in the evolution of coupled intra-seasonal oscillation (ISO) in the Bay of Bengal (BoB) using multi-satellite observations and ocean analysis product. Satellite-derived humidity profiles obtained from the atmospheric infrared sounder (AIRS) show that intense rains over the BoB are associated with the moistening (drying) in the lower and mid-troposphere during the active (break) phase of summer intraseasonal oscillation (ISO). Anomalous moistening in the mid-troposphere up to 500 hPa ahead of the maximum precipitation band over north BoB gives a precursor signal for the northward movement of the rain band. During the active (break) phase, the upper-tropospheric positive (negative) temperature anomaly ahead of the maximum rain band also sets a precondition by heating the mid- to upper troposphere. Daily subsurface temperature from Global Ocean Data Assimilation System (GODAS) analysis show that during the active phase, tropospheric moistening (drying) coincides with the subsurface warm (cold) temperature up to 200-m depth. The upper ocean warms uniformly by ~ 1 °C during the active phase as compared to the break phase in the entire BoB. The presence of a thin warm layer below the maximum rain band creates an environment conducive to sustaining the active phase on the ISO time scale. A positive sea surface temperature (SST) anomaly along with upper ocean warming ahead of a rain band in the north BoB in association with lower and mid-tropospheric moistening sets a precondition for the northward movement of the rain band. The anomalous warming (cooling) in the thermocline is associated with deeper (shallower) thermocline depth [23° isotherms (D23)] and coincides with the mixed-layer warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abhik, S., Halder, M., Mukhopadhyay, P., Jiang, X., & Goswami, B. N. (2013). Possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on TRMM and MERRA reanalysis. Climate Dynamics,40, 1611–1624. https://doi.org/10.1007/s00382-012-1425-x.

    Article  Google Scholar 

  • Abhik, S., Mukhopadhyay, P., & Goswami, B. N. (2014). Evaluation of mean and intraseasonal variability of Indian summer monsoon simulation in ECHAM5: identification of possible source of bias. Climate Dynamics,43, 389–406. https://doi.org/10.1007/s00382-013-1824-7.

    Article  Google Scholar 

  • AVISO SSALTO/DUACS (2012) User handbook (M)SLA and (M)ADT near-real time and delayed time products CLS-DOS-NT-06-034-ISSUE 3.0.

  • Bentamy, A., Croize-Fillon, D., Queffeulou, P., Liu, C., & Roquet, H. (2009). Evaluation of high-resolution surface wind products at global and regional scales. Journal of Operational Oceanography,2, 15–27.

    Article  Google Scholar 

  • Bentamy, A., Grodsky, S. A., Carton, J. A., Croize-Fillon, D., & Chapron, B. (2012). Matching ASCAT and QuikSCAT winds. Journal of Geophysical Research: Oceans,117, 02011. https://doi.org/10.1029/2011JC007479.

    Article  Google Scholar 

  • Bosilovich, M., Chen, J., Robertson, F. R., & Adler, R. F. (2008). Evaluation of global precipitation in reanalyses. Journal of Applied Meteorology and Climatology,47, 2279–2299.

    Article  Google Scholar 

  • Divakarla, M. G., Barnet, C. D., Goldberg, M. D., McMillin, L. M., Maddy, E., Wolf, W., et al. (2006). Validation of atmospheric infrared sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. Journal of Geophysical Research,111, D09S15. https://doi.org/10.1029/2005jd006116.

    Article  Google Scholar 

  • Fetzer, E. J., Lambrigtsen, B. H., Eldering, A., Aumann, H. H., & Chahine, M. T. (2006). Biases in total precipitable water vapor climatologies from atmospheric infrared sounder and advanced microwave scanning radiometer. Journal of Geophysical Research. https://doi.org/10.1029/2005jd006598.

    Article  Google Scholar 

  • Fetzer, E. J., McMillin, L., Tobin, D., Aumann, H. H. M., Gunson, R., McMillan, W., et al. (2003). AIRS/AMSU/HSB validation. IEEE Transactions on Geoscience and Remote Sensing,41, 418–431. https://doi.org/10.1109/TGRS.2002.808293.

    Article  Google Scholar 

  • Fetzer, E. J., Teixeira, J., Olsen, E. T., & Fishbein, E. F. (2004). Satellite remote sounding of atmospheric boundary layer temperature inversions over the subtropical eastern Pacific. Geophysical Research Letters,31, L17102. https://doi.org/10.1029/2004GL020174.

    Article  Google Scholar 

  • Fu, X., & Wang, B. (2004). Differences of boreal summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model. Journal of Climate,17(6), 1263–1271.

    Article  Google Scholar 

  • Fu, X., Wang, B., Li, T., & McCreary, J. P. (2003). Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. Journal of Atmospheric Science,60(15), 1733–1753.

    Article  Google Scholar 

  • Fu, X., Wang, B., & Tao, L. (2006). Satellite data reveal the 3-D moisture structure of Tropical Intraseasonal Oscillation and its coupling with underlying ocean. Geophysical Research Letters,33, L03705. https://doi.org/10.1029/2005GL025074.

    Article  Google Scholar 

  • Fu, X., Wang, B., Waliser, D. E., & Tao, L. (2007). Impact of atmosphere–ocean coupling on the predictability of monsoon intraseasonal oscillations. Journal of Atmospheric Science,64, 157–174.

    Article  Google Scholar 

  • Fu, X., Yang, B., Bao, Q., & Wang, B. (2008). Sea surface temperature feedback extends the predictability of tropical intraseasonal oscillation. Monthly Weather Review,136(2), 577–597.

    Article  Google Scholar 

  • Gadgil, S. (2003). The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences,31, 429–467. https://doi.org/10.1146/annurev.earth.31.100901.141251.

    Article  Google Scholar 

  • Gentemann, C. L., Meissner, T., & Wentz, F. J. (2010). Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Transactions on Geosciences and Remote Sensing,48(3), 1009–1018.

    Article  Google Scholar 

  • Girishkumar, M. S., Joseph, J., Thangaprakash, V. P., Pottapinjara, V., & McPhaden, M. J. (2017). Mixed layer temperature budget for the northward propagating Summer Monsoon Intraseasonal Oscillation (MISO) in the Central Bay of Bengal. Journal of Geophysical Research,122, 8841–8854. https://doi.org/10.1002/2017JC013073.

    Article  Google Scholar 

  • Goswami, B. N. (1987). A mechanism for the west-north-west movement of the monsoon depressions. Nature,326, 376.

    Article  Google Scholar 

  • Goswami, B. N. (2005). South Asian monsoon. In W. K. M. Lau & D. E. Waliser (Eds.), Intraseasonal variability in the atmosphere–ocean climate system (pp. 19–61). Berlin: Springer.

    Chapter  Google Scholar 

  • Goswami, B. N. (2011). South Asian summer monsoon. In D. E. Waliser & W. K. M. Lau (Eds.), Intraseasonal variability of the atmosphere–ocean climate system (pp. 21–72). Berlin: Springer.

    Google Scholar 

  • Goswami, B. N., & Ajaya Mohan, R. S. (2001). Intraseasonal oscillations and inter-annual variability of the Indian summer monsoon. Journal of Climate,14, 1180–1198.

    Article  Google Scholar 

  • Hoyos, C. D., & Webster, P. J. (2007). The role of intraseasonal variability in the nature of Asian monsoon precipitation. Journal of Climate,20(17), 4402–4424.

    Article  Google Scholar 

  • Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., et al. (2001). Global precipitation at one-degree daily resolution from multisatellite observations. Journal of Hydrometeorology,2(1), 36–50. https://doi.org/10.1175/1525-7541(2001)002%3c0036:GPAODD%3e2.0.CO;2.

    Article  Google Scholar 

  • Jiang, X., Li, T., & Wang, B. (2004). Structures and mechanisms of the northward propagation boreal summer intraseasonal oscillation. Journal of Climate,17, 1022–1039.

    Article  Google Scholar 

  • Jones, C., Carvalho, L. M. V. R., Higgins, W., Waliser, D. E., & Schemm, J.-K. E. (2004). Climatology of tropical intraseasonal convective anomalies: 1979–2002. Journal of Climate,17, 523–539.

    Article  Google Scholar 

  • Julian, P. R., & Madden, R. A. (1981). Comments on a paper by T. Yasunari: a quasistationary appearance of 30- to 40-day period in the cloudiness fluctuations during the summer monsoon over India. Journal of the Meteorological Society of Japan,59, 435–437.

    Article  Google Scholar 

  • Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M., et al. (2002). NCEP–DOE AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society,83, 1631–1643.

    Article  Google Scholar 

  • Kemball-Cook, S. R., & Wang, B. (2001). Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. Journal of Climate,14, 2923–2942.

    Article  Google Scholar 

  • Kunze, E., Firing, E., Hummon, J. M., Chereskin, T. K., & Thurnherr, A. M. (2006). Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. Journal of Physical Oceanography,36(8), 1553–1576.

    Article  Google Scholar 

  • Lau, K.-M., & Chan, P. H. (1986). Aspects of 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Monthly Weather Review,114, 1354–1367.

    Article  Google Scholar 

  • Lau, K.-M., & Peng, L. (1990). Origin of low frequency (intraseasonal) oscillations in the tropical atmosphere. Part III: Monsoon dynamics. Journal of Atmospheric Science,47, 1443–1462.

    Article  Google Scholar 

  • Lawrence, D. M., & Webster, P. J. (2001). Interannual variations of the intraseasonal oscillation in the South Asian summer monsoon region. Journal of Climate,14, 2910–2922.

    Article  Google Scholar 

  • Lawrence, D. M., & Webster, P. J. (2002). The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection. Journal of Atmospheric Science,59, 1593–1606.

    Article  Google Scholar 

  • Li, Y., Han, W., Ravichandran, M., Wang, W., Shinoda, T., & Lee, T. (2017). Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 1. Intraseasonal variability and causes. Journal of Geophysical Research: Oceans,122, 4291–4311. https://doi.org/10.1002/2017JC012691.

    Article  Google Scholar 

  • Li, Y., Han, W., Wang, W., Zhang, L., & Ravichandran, M. (2018). The Indian Summer Monsoon Intraseasonal Oscillations in CFSv2 Forecasts: Biases and Importance of Improving Air-Sea Interaction Processes. Journal of Climate,31, 5351–5370.

    Article  Google Scholar 

  • Lin, J. L., Weickman, K. M., Kiladis, G. N., Mapes, B. E., Schubert, S. D., Suarez, M. J., et al. (2008). Subseasonal variability associated with Asian summer monsoon simulated by 14 AR4 coupled GCMs. Journal of Climate,21, 4541–4567. https://doi.org/10.1175/2008JCLI1816.1.

    Article  Google Scholar 

  • Parampil, S. R., Bharathraj, G. N., Harrison, M., & Sengupta, D. (2016). Observed subseasonal variability of heat flux and the SST response of the tropical Indian Ocean. Journal of Geophysical Research: Oceans,121, 7290–7307. https://doi.org/10.1002/2016JC011948.

    Article  Google Scholar 

  • Parampil, S. R., Gera, A., Ravichandran, M., & Sengupta, D. (2010). Intraseasonal response of mixed layer temperature and salinity in the Bay of Bengal to heat and freshwater flux. Journal of Geophysical Research. https://doi.org/10.1029/2009jc005790.

    Article  Google Scholar 

  • Praveen Kumar, B., Vialard, J., Lengaigne, M., Murty, V. S. N., & McPhaden, M. J. (2011). TropFlux: Air-sea fluxes for the global tropical oceans-description and evaluations. Climate Dynamics. https://doi.org/10.1007/s00382-011-1115-0.

    Article  Google Scholar 

  • Rahman, H., & Sengupta, D. (2007). Preliminary comparison of daily rainfall from satellites and Indian gauge data. CAOS Technical Report No. 2007AS1, pp-26. Published from Centre for Atmospheric and Oceanic Sciences (CAOS), Indian Institute of Science, Bengaluru, India.

  • Ravichandran, M., Behringer, D., Sivareddy, S., Girishkumar, M. S., Chacko, N., & Harikumar, R. (2013). Evaluation of the global ocean data assimilation system at INCOIS: the tropical Indian Ocean. Ocean Model, 69, 123–135. https://doi.org/10.1016/j.ocemod.2013.05.003.

    Article  Google Scholar 

  • Roxy, M., & Tanimoto, Y. (2007). Role of SST over the Indian Ocean in Influencing the Intraseasonal Variability of the Indian Summer Monsoon. Journal of the Meteorological Society of Japan,85, 349–358.

    Article  Google Scholar 

  • Roxy, M., Tanimoto, Y., Preethi, B., Terray, P., & Krishnan, R. (2013). Intraseasonal SST-precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dynamics,41, 45–61.

    Article  Google Scholar 

  • Sengupta, D., & Ravichandran, M. (2001). Oscillations of Bay of Bengal sea surface temperature during the 1998 summer monsoon. Geophysical Research Letters,28(10), 2033–2036.

    Article  Google Scholar 

  • Sengupta, D., Ray, P. K., & Bhat, G. S. (2002). Spring warming of the eastern Arabian Sea and Bay of Bengal from buoy data. Geophysical Research Letters. https://doi.org/10.1029/2002gl015340.

    Article  Google Scholar 

  • Sengupta, D., Senan, R., & Goswami, B. N. (2007). Intraseasonal variability of equatorial Indian Ocean zonal currents. Journal of Climate,20, 3036–3055.

    Article  Google Scholar 

  • Seo, K.-H., Schemm, J.-K. E., Wang, W., & Kumar, A. (2007). The boreal summer intraseasonal oscillation simulated in the NCEP climate forecast system: the effect of sea surface temperature. Monthly Weather Review,135(5), 1807–1827.

    Article  Google Scholar 

  • Sharmila, S., Pillai, P. A., Joseph, S., Roxy, M., Krishna, R. P. M., et al. (2013). Role of ocean-atmosphere interaction on northward propagation of Indian summer monsoon intra-seasonal oscillations (MISO). Climate Dynamics,41, 1651–1669. https://doi.org/10.1007/s00382-013-1854-1.

    Article  Google Scholar 

  • Sikka, D. R., & Gadgil, S. (1980). On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Monthly Weather Review,108, 1840–1853.

    Article  Google Scholar 

  • Thangaprakash, V. P., Girishkumar, M. S., Suprit, K., Suresh Kumar, N., Chaudhuri, D., Dinesh, K., et al. (2016). What controls seasonal evolution of sea surface temperature in the Bay of Bengal? Mixed layer heat budget analysis using moored buoy observations along 90°E. Oceanography,29(2), 202–213. https://doi.org/10.5670/oceanog.2016.52.

    Article  Google Scholar 

  • Tian, B., Waliser, D. E., Fetzer, E. J., Lambrigtsen, B. H., Yung, Y. L., & Wang, B. (2006). Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. Journal of Atmospheric Science,63, 2462–2485.

    Article  Google Scholar 

  • Tian, B., Waliser, D. E., Fetzer, E. J., & Yung, Y. L. (2010). Vertical moist thermodynamic structure of the Madden–Julian Oscillation in Atmospheric Infrared Sounder Retrievals: an update and a comparison to ECMWF Interim Re-Analysis. Monthly Weather Review,138(12), 4576–4582.

    Article  Google Scholar 

  • Vecchi, G. A., & Harrison, D. E. (2002). Monsoon breaks and sub-seasonal sea surface temperature variability in the Bay of Bengal. Journal of Climate,15(12), 1485–1493.

    Article  Google Scholar 

  • Vialard, J., Foltz, G., McPhaden, M., Duvel, J. P., & Montegut, B. (2008). Strong Indian Ocean sea surface temperature signals associated with the Madden–Julian Oscillation in late 2007 and early 2008. Geophysical Research Letters. https://doi.org/10.1029/2008gl035238.

    Article  Google Scholar 

  • Vialard, J., Jayakumar, A., Gnanaseelan, C., Lengaigne, M., Sengupta, D., & Goswami, B. N. (2010). Processes of 30-90 days sea surface temperature variability in the northern Indian Ocean during boreal summer. Climate Dynamics,90, 45–61.

    Google Scholar 

  • Vo¨ro¨smarty, C. J., Fekete, B., & Tucker, B. A., (1996). River discharge database, version 1.0 (RivDIS v1.0), vols. 0–6, a contribution to IHP-V Theme 1, Technical Documents in Hydrology Series, technical report, U. N. Educ., Sci., and Cult. Org., Paris.

  • Waliser, D. E., Zhang, Z., Lau, K., & Kim, J. H. (2001). Interannual sea surface temperature variability and the predictability of tropical intraseasonal variability. Journal of Atmospheric Science,58(17), 2596–2615.

    Article  Google Scholar 

  • Waliser, D. E., et al. (2003). AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dynamics,21, 423–446. https://doi.org/10.1007/s00382-003-0337-1.

    Article  Google Scholar 

  • Wang, W., Chen, M., & Kumar, A. (2009). Impacts of ocean surface on the northward propagation of the boreal summer intraseasonal oscillation in the NCEP climate forecast system. Journal of Climate,22(24), 6561–6576.

    Article  Google Scholar 

  • Wang, B., & Rui, H. (1990). Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteorology and Atmospheric Physics,44, 43–61.

    Article  Google Scholar 

  • Wang, B., & **e, X. (1997). A model for the boreal summer intraseasonal oscillation. Journal of Atmospheric Science,54, 71–86.

    Google Scholar 

  • Wong, S., Fetzer, E. J., Tian, B., & Lambrigtsen, B. H. (2011). The apparent water vapor sinks and heat sources associated with the intraseasonal oscillation of the Indian summer monsoon. Journal of Climate,24, 4466–4479.

    Article  Google Scholar 

  • Yang, B., Fu, X., & Wang, B. (2008). Atmosphere-ocean conditions jointly guide convection of the boreal summer intraseasonal oscillation: Satellite observations. Journal of Geophysical Research,113, D11105. https://doi.org/10.1029/2007JD009276.

    Article  Google Scholar 

  • Yasunari, T. (1979). Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. Journal of The Meteorological Society of Japan,57, 227–242.

    Article  Google Scholar 

  • Zhang, L., Han, W., Li, Y., & Maloney, E. D. (2018). Role of North Indian ocean air–sea interaction in summer monsoon intraseasonal oscillation. Journal of Climate,31, 7885–7908.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, Indian National Centre for Ocean Information Services (INCOIS). The research described in this paper was begun while the first author was in Prof. Debasis Sengupta’s group at CAOS, IISc but carried out and completed at INCOIS. This research work was supported by INCOIS. My sincere thanks to Prof. Debasis Sengupta for his encouragement and fruitful discussion to complete this work. The TropFlux data are obtained from http://www.locean-ipsl.upmc.fr/~tropflux/data/daily. The authors thank the data set producer for the free access of these data sets. The AMSR-E sea surface data were obtained from http://apdrc.soest.hawaii.edu/. The daily sea level data are provided by the AVISO project (www.aviso.oceanobs.com). This is INCOIS contribution number 341. This is NCPOR Contribution number J-14/2019-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasibur Rahaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahaman, H., Bharath Raj, G.N. & Ravichandran, M. Coupled Ocean–Atmosphere Summer Intraseasonal Oscillation over the Bay of Bengal. Pure Appl. Geophys. 176, 5415–5429 (2019). https://doi.org/10.1007/s00024-019-02275-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02275-4

Keywords

Navigation