Log in

Seismicity Analysis of the 2016 Ms5.0 Yunlong Earthquake, Yunnan, China and Its Tectonic Implications

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We relocate earthquakes occurring 1 week before and 1 month after the 2016 Yunlong Ms5.0 earthquake by simultaneously using P (and S) travel times and waveform cross-correlation data in the double-difference relocation algorithm. We then use the well-relocated earthquakes as template events and scan through the continuous waveforms to search for and locate weak events by using the match and locate method. A total of 4602 events are detected by using 660 templates, which is ~ 3 times the number of events listed in the Yunnan Seismic Networks catalogue. Our refined catalogue reveals three stages of seismic activity and energy release processes during the 2016 Yunlong Ms5.0 earthquake sequence. We also refine the focal depths and mechanisms of 12M ≥ 3.0 earthquakes using the broadband waveform modeling method. Both the relocated hypocenters and focal mechanisms of the 12M ≥ 3.0 earthquakes delineate fault strike and dip angles of ~ 200° and ~ 75°, respectively, indicating that the seismogenic fault could be a NNE-striking blind or subfault located between the Weixi-Qiaohou Fault and Lancangjiang Fault. Our results could contribute to better understanding of local seismic hazard evaluations in the vicinity of Yunlong area of Yunnan, China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ben-Zion, Y. (2008). Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Reviews of Geophysics, 46, RG4006. https://doi.org/10.1029/2008RG000260.

    Article  Google Scholar 

  • Ben-Zion, Y., Peng, Z., Okaya, D., Seeber, L., Armbruster, J. G., Ozer, N., et al. (2003). A shallow fault-zone structure illuminated by trapped waves in the Karadere–Duzce branch of the North Anatolian Fault, western Turkey. Geophysical Journal International, 152(3), 699–717.

    Article  Google Scholar 

  • Deng, Q., et al. (2007). Map of active tectonics in China. Bei**g: Seismological Press. (in Chinese).

    Google Scholar 

  • Fang, L., Wu, J., Wang, W., Du, W., Su, J., Wang, C., et al. (2015). Aftershock observation and analysis of the 2013 Ms 7.0 Lushan earthquake. Seismological Research Letters, 86(4), 1135–1142.

    Article  Google Scholar 

  • Florez, M. A., & Prieto, G. A. (2017). Precise relative earthquake depth determination using array processing techniques. Journal of Geophysical Research: Solid Earth, 122, 4559–4571. https://doi.org/10.1002/2017jb014132.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188.

    Google Scholar 

  • Han, L., Zeng, X., Jiang, C., Ni, S., Zhang, H., & Long, F. (2014). Focal mechanisms of the 2013 Mw6.6 Lushan, China earthquake and high-resolution aftershock relocations. Seismological Research Letters, 85(1), 8–14.

    Article  Google Scholar 

  • Huang, Q., Gerstenberger, M., & Zhuang, J. (2016). Current challenges in statistical seismology. Pure and Applied Geophysics, 173(1), 1–3.

    Article  Google Scholar 

  • Huang, F., Qin, J., Li, Z., & Wu, C. (2007). Subarea characteristics of earthquake types in Yunnan. Acta Seismologica Sinica (in Chinese), 29(2), 142–150.

    Google Scholar 

  • Jiang, J., Fu, H., & Chen, Q.-F. (2016). Characteristics of seismicity of the **aowan reservoir in tectonic active area from double-difference relocation analysis. Chinese Journal of Geophysics, 59(5), 605–621.

    Article  Google Scholar 

  • Kawamura, M., Chen, C. C., & Wu, Y. M. (2014). Seismicity change revealed by ETAS, PI, and Z-value methods: A case study of the 2013 Nantou, Taiwan earthquake. Tectonophysics, 634, 139–155.

    Article  Google Scholar 

  • Kumazawa, T., Ogata, Y., & Tsuruoka, H. (2017). Measuring seismicity diversity and anomalies using point process models: Case studies before and after the 2016 Kumamoto earthquakes in Kyushu, Japan. Earth, Planets and Space, 69(1), 169.

    Article  Google Scholar 

  • Lei, X., Ma, S., Chen, W., Pang, C., Zeng, J., & Jiang, B. (2013). A detailed view of the injection-induced seismicity in a natural gas reservoir in Zigong, southwestern Sichuan Basin, China. Journal of Geophysical Research: Solid Earth, 118(8), 4296–4311.

    Google Scholar 

  • Lei, X., **e, C., & Fu, B. (2011). Remotely triggered seismicity in Yunnan, southwestern China, following the 2004 Mw9.3 Sumatra earthquake. Journal of Geophysical Research: Solid Earth, 116, B08303. https://doi.org/10.1029/2011jb008245.

    Google Scholar 

  • Lei, X., Yu, G., Ma, S., Wen, X., & Wang, Q. (2008). Earthquakes induced by water injection at ~ 3 km depth within the Rongchang gas field, Chongqing, China. Journal of Geophysical Research: Solid Earth, 113, B10310. https://doi.org/10.1029/2008JB005604.

    Article  Google Scholar 

  • Li, T., Wu, X. P., & Wang, Y. (2010). Study on b-value distribution in Yunnan based on regional spatial scanning. Journal of Yunnan University (in Chinese), 32(6), 670–675.

    Google Scholar 

  • Liu, Y., & Pei, S. (2017). Temporal and spatial variation of b-value before and after Wenchuan earthquake and its tectonic implication. Chinese Journal of Geophysics, 60(6), 2104–2112. https://doi.org/10.6038/cjg20170607 (in Chinese).

    Google Scholar 

  • Luo, Y., Zhao, L., Zeng, X., & Gao, Y. (2015). Focal mechanisms of the Lushan earthquake sequence and spatial variation of the stress field. Science China Earth Sciences, 58(7), 1148–1158. https://doi.org/10.1007/s11430-014-5017-y.

    Article  Google Scholar 

  • Luo, J., Zhao, C., & Zhou, L. (2014). Characteristics of focal mechanisms and stress field of the Chuan-Dian rhombic block and its adjacent regions. Seismology and Geology (in Chinese), 36(2), 405–421.

    Google Scholar 

  • Ma, S., & Atkinson, G. M. (2006). Focal depths for small to moderate earthquakes (mN ≥ 2.8) in Western Quebec, Southern Ontario, and Northern New York. Bulletin of the Seismological Society of America, 96(2), 609–623.

    Article  Google Scholar 

  • Mandal, P., & Horton, S. (2007). Relocation of aftershocks, focal mechanisms and stress inversion: Implications toward the seismo-tectonics of the causative fault zone of Mw7.6 2001 Bhuj earthquake (India). Tectonophysics, 429(1-2), 61–78.

    Article  Google Scholar 

  • Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401), 9–27.

    Article  Google Scholar 

  • Ogata, Y. (1992). Detection of precursory relative quiescence before great earthquakes through a statistical model. Journal of Geophysical Research: Solid Earth, 97(B13), 19845–19871.

    Article  Google Scholar 

  • Ogata, Y., & Tsuruoka, H. (2016). Statistical monitoring of aftershock sequences: A case study of the 2015 Mw7.8 Gorkha, Nepal, earthquake. Earth, Planets and Space, 68(1), 44.

    Article  Google Scholar 

  • Omi, T., Ogata, Y., Hirata, Y., & Aihara, K. (2014). Estimating the ETAS model from an early aftershock sequence. Geophysical Research Letters, 41(3), 850–857. https://doi.org/10.1002/2013GL058958.

    Article  Google Scholar 

  • Peng, Z., & Zhao, P. (2009). Migration of early aftershocks following the 2004 Parkfield earthquake. Nature Geoscience, 2, 877–881. https://doi.org/10.1038/ngeo697.

    Article  Google Scholar 

  • Scholz, C. H. (1968). The frequency-magnitude relation of micro fracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58(1), 399–415.

    Google Scholar 

  • Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437(7058), 539.

    Article  Google Scholar 

  • Utsu, T., & Ogata, Y. (1995). The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43(1), 1–33.

    Article  Google Scholar 

  • Vere-Jones, D., Ben-Zion, Y., & Zúñiga, R. (2005). Statistical seismology. Pure and Applied Geophysics, 162(6–7), 1023–1026.

    Article  Google Scholar 

  • Waldhauser, F., & Ellsworth, W. L. (2000). A double difference earthquake location algorithm method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 96(6), 1353–1368.

    Article  Google Scholar 

  • Wang, X., Bradley, K. E., Wei, S., & Wu, W. (2018). Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling. Earth and Planetary Science Letters, 483, 29–38.

    Article  Google Scholar 

  • Wang, X., Wei, S., & Wu, W. (2017). Double-ramp on the Main Himalayan Thrust revealed by broadband waveform modeling of the 2015 Gorkha earthquake sequence. Earth and Planetary Science Letters, 473, 83–93. https://doi.org/10.1016/j.epsl.2017.05.032.

    Article  Google Scholar 

  • Wang, Q., Zhu, L., Su, Y., & Wang, G. (2015). Double-difference relocation of the 7 September 2012 Yiliang earthquake and its aftershock sequence. Chinese Journal of Geophysics (in Chinese), 58(9), 3205–3221. https://doi.org/10.6038/cjg20150916.

    Google Scholar 

  • Wells, D., & Coppersmith, K. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

    Google Scholar 

  • Weng, H., & Yang, H. (2017). Seismogenic width controls aspect ratios of earthquake ruptures. Geophysical Research Letters, 44(6), 2725–2732. https://doi.org/10.1002/2016gl072168.

    Article  Google Scholar 

  • Wu, J., Ming, Y., & Wang, C. (2004). Source mechanism of small-to-moderate earthquakes and tectonic stress field in Yunnan province. Acta Seismologica Sinica (in Chinese), 26(5), 457–465.

    Google Scholar 

  • Wu, J., Yao, D., Meng, X., Peng, Z., Su, J., & Long, F. (2017). Spatial-temporal evolutions of early aftershocks following the 2013 Mw 6.6 Lushan earthquake in Sichuan, China. Journal of Geophysical Research: Solid Earth, 122, 2873–2889. https://doi.org/10.1002/2016jb013706.

    Google Scholar 

  • **e, Z., Zheng, Y., Yao, H., Fang, L., Zhang, Y., Liu, C., et al. (2018). Preliminary analysis on the source properties and seismogenic structure of the 2017 Ms7.0 Jiuzhaigou Earthquake. Science China Earth Sciences, 61(3), 339–352. https://doi.org/10.1007/s11430-017-9161-y.

    Article  Google Scholar 

  • Yang, H., Li, Z., Peng, Z., Ben-Zion, Y., & Vernon, F. (2014). Low-velocity zones along the San Jacinto Fault, Southern California, from body waves recorded in dense linear arrays. Journal of Geophysical Research: Solid Earth, 119(12), 8976–8990.

    Google Scholar 

  • Yang, H., Zhu, L., & Chu, R. (2009). Fault-plane determination of the 18 April 2008 Mount Carmel, Illinois, earthquake by detecting and relocating aftershocks. Bulletin of the Seismological Society of America, 99(6), 3413–3420. https://doi.org/10.1785/0120090038.

    Article  Google Scholar 

  • Zhang, M., & Wen, L. (2015). An effective method for small event detection: Match and locate (M&L). Geophysical Journal International, 200(3), 1523–1537.

    Article  Google Scholar 

  • Zhang, S., & Zhou, S. (2016). Spatial and temporal variation of b-values in southwest China. Pure and Applied Geophysics, 173(1), 85–96.

    Article  Google Scholar 

  • Zhao, X., & Fu, H. (2014). Seismogenic structure identification of the 2013 Eryuan Ms5.5 and Ms5.0 earthquake sequence. Acta Seismologica Sinica (in Chinese), 36(4), 640–650. https://doi.org/10.3969/j.issn.0253-3782.2014.04.010.

    Google Scholar 

  • Zhu, L., & Ben-Zion, Y. (2013). Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data. Geophysical Journal International, 194(2), 839–843.

    Article  Google Scholar 

  • Zhu, L., & Helmberger, D. V. (1996). Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5), 1634–1641.

    Google Scholar 

  • Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627.

    Article  Google Scholar 

  • Zhu, Y., Song, X., Liu, S., et al. (2016). Research on earthquake reference velocity structure of China. Bei**g: Seismological Press. (in Chinese).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Earthquake Scientific Research of Yunnan Earthquake Agency (grants 201601, 2018ZX01, and C3-201706). Seismic waveform and catalogue data were obtained from Yunnan Seismic Networks. We are grateful to Dr. Miao Zhang for providing the M&L program package, as well as Professor ** Tools (GMT) were used for basic data processing and figure development. We thank Dr. **n Wang for help in paper writing and revision. We also thank the editor, Dr. Haijiang Zhang, and two anonymous reviewers for constructive comments and suggestions that significantly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **zhong Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Li, J. & Fu, H. Seismicity Analysis of the 2016 Ms5.0 Yunlong Earthquake, Yunnan, China and Its Tectonic Implications. Pure Appl. Geophys. 176, 1225–1241 (2019). https://doi.org/10.1007/s00024-018-2067-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2067-7

Navigation