Log in

Twisted cubic and plane-line incidence matrix in \(\mathrm {PG}(3,q)\)

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

The point-plane, the point-line, and the plane-line incidence matrices of \(\mathrm {PG}(3,q)\) are of interest in combinatorics, finite geometry, graph theory and group theory. Some of the properties of these matrices and their submatrices are related with the interplay of orbits of points, lines and planes under the action of subgroups of \(\mathrm {PGL}(4,q)\). A remarkable particular case is the subgroup \(G\cong \mathrm {PGL}(2,q)\), viewed as the stabilizer group of the twisted cubic \(\mathscr {C}\). For this case, the study of the point-plane incidence matrix, initiated by D. Bartoli and the present authors, has attracted attention as being related to submatrices with useful applications in coding theory for the construction of multiple covering codes. In this paper, we extend our investigation to the plane-line incidence matrix apart from just one class of the line orbits, named \(\mathcal {O}_6\) in the literature. For all \(q\ge 2\), in each submatrix, the numbers of lines in any plane and planes through any line are obtained. As a tool for the present investigation, we use submatrices of incidences arising from orbits of planes and unions of line orbits, including \(\mathcal {O}_6\). For each such submatrix we determine the total number of lines from the union in any plane and the average number of planes from the orbit through any line of the union.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

All data generated or analysed during this study are included in this published article.

References

  1. Barg, A., Zemor, G.: Distances properties of expander codes. IEEE Trans. Inf. Theory 52(1), 78–90 (2006). https://doi.org/10.1109/TIT.2005.860415.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartoli, D., Davydov, A.A., Marcugini, S., Pambianco, F.: On planes through points off the twisted cubic in PG(3,q) and multiple covering codes. Finite Fields Appl. 67, paper 101710 (2020). https://doi.org/10.1016/j.ffa.2020.101710.

  3. Blokhuis, A., Pellikaan, R., Szönyi, T.: The extended coset leader weight enumerator of a twisted cubic code. ar**v:2103.16904 [math.CO] (2021)

  4. Bonoli, G., Polverino, O.: The twisted cubic in\({\rm PG}(3, q)\)and translation spreads in\(H(q)\). Discret. Math. 296, 129–142 (2005). https://doi.org/10.1016/j.disc.2005.03.010.

  5. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997). https://doi.org/10.1006/jsco.1996.0125.

  6. Bruen, A.A., Hirschfeld, J.W.P.: Applications of line geometry over finite fields I: The twisted cubic. Geom. Dedicata 6, 495–509 (1977). https://doi.org/10.1007/BF00147786.

  7. Caputo, S., Korchmáros, G., Sonnino, A.: Multilevel secret sharing schemes arising from the normal rational curve. Discret. Appl. Math. 284, 158–165 (2020). https://doi.org/10.1016/j.dam.2020.03.030.

    Article  MathSciNet  MATH  Google Scholar 

  8. Casse, L.R.A., Glynn, D.G.: The solution to Beniamino Segre’s problem\(I_{r, q}\), \(r = 3\), \(q = 2^h\). Geom. Dedicata 13, 157–163 (1982). https://doi.org/10.1007/BF00147659.

  9. Casse, L.R.A., Glynn, D.G.: On the uniqueness of\((q + 1)_{4}\)-arcs of\({\rm PG}(4, q)\), \( q= 2^h\), \(h\ge 3\). Discret. Math. 48(2–3), 173–186 (1984). https://doi.org/10.1016/0012-365X(84)90180-8.

  10. Cossidente, A., Hirschfeld, J.W.P., Storme, L.: Applications of line geometry, III: the quadric Veronesean and the chords of a twisted cubic. Australas. J. Combin. 16, 99–111 (1997). https://ajc.maths.uq.edu.au/pdf/16/ocr-ajc-v16-p99.pdf.

  11. Davydov, A.A., Giulietti, M., Marcugini, S., Pambianco, F.: Some combinatorial aspects of constructing bipartite-graph codes. Graphs Combin. 29(2), 187–212 (2013). https://doi.org/10.1007/s00373-011-1103-5.

    Article  MathSciNet  MATH  Google Scholar 

  12. Davydov, A.A., Faina, G., Giulietti, M., Marcugini, S., Pambianco, F.: On constructions and parameters of symmetric configurations\(v_k\). Des. Codes Cryptogr. 80(1), 125–147 (2016). https://doi.org/10.1007/s10623-015-0070-x.

  13. Davydov, A.A., Marcugini, S., Pambianco, F.: Twisted cubic and plane-line incidence matrix in\({\rm PG}(3,q)\). ar**v:2103.11248 [math.CO] (2021)

  14. Davydov, A.A., Marcugini, S., Pambianco, F.: Twisted cubic and orbits of lines in\({\rm PG}(3,q)\). ar**v:2103.12655 [math.CO] (2021)

  15. Davydov, A.A., Marcugini, S., Pambianco, F.: On cosets weight distributions of the doubly-extended Reed–Solomon codes of codimension 4. IEEE Trans. Inform. Theory 67(8), 5088–5096 (2021). https://doi.org/10.1109/TIT.2021.3089129.

  16. Davydov, A.A., Marcugini, S., Pambianco, F.: Twisted cubic and point-line incidence matrix in\({\rm PG}(3, q)\). Des. Codes Cryptogr. 89(10), 2211–2233 (2021). https://doi.org/10.1007/s10623-021-00911-6.

  17. Erdős, P., Kleitman, D.: On collections of subsets containing no\(4\)-member Boolean algebra. Proc. Am. Math. Soc. 28(1), 87–90 (1971). https://doi.org/10.1090/S0002-9939-1971-0270924-9.

  18. Giulietti, M., Vincenti, R.: Three-level secret sharing schemes from the twisted cubic. Discret. Math. 310, 3236–3240 (2010). https://doi.org/10.1016/j.disc.2009.11.040.

    Article  MathSciNet  MATH  Google Scholar 

  19. Günay, G., Lavrauw, M.: On pencils of cubics on the projective line over finite fields of characteristic\(> 3\). ar**v:2104.04756 [math.CO] (2021)

  20. Gropp, H.: Configurations. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 353–355. Chapman and Hall/CRC, New York (2006)

    Google Scholar 

  21. Hirschfeld, J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  22. Hirschfeld, J.W.P.: Projective Geometries over Finite Fields, 2nd edn Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  23. Høholdt, T., Justesen, J.: Graph codes with Reed–Solomon component codes. In: Proc. Int. Symp. Inf. Theory 2006, ISIT 2006, IEEE, Seattle, WA, USA, pp. 2022–2026 (2006). https://doi.org/10.1109/ISIT.2006.261904.

  24. Korchmáros, G., Lanzone, V., Sonnino, A.: Projective k-arcs and 2-level secret-sharing schemes. Des. Codes Cryptogr. 64(1), 3–15 (2012). https://doi.org/10.1007/s10623-011-9562-5.

    Article  MathSciNet  MATH  Google Scholar 

  25. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications, 2nd edn Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  26. Mathon, R., Rosa, A.: \(2\)-\((v, k,\lambda )\) Designs of Small Order. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, pp. 25–58. Chapman and Hall/CRC, New York (2006)

    MATH  Google Scholar 

  27. Reiman, I.: Über ein Problem von K. Zarankiewicz. Acta Math. Acad. Sci. Hungar. 9, 269–273 (1958). https://doi.org/10.1007/BF02020254.

  28. Verstraëte, J.: Extremal problems for cycles in graphs. In: Beveridge, A., Griggs, J., Hogben, L., Musiker, G., Tetali, P. (eds.) Recent Trends in Combinatorics. The IMA Volumes in Mathematics and its Applications, vol. 159, pp. 83–116. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24298-9_4.

  29. Zannetti, M., Zuanni, F.: Note on three-character\((q + 1)\)-sets in\({\rm PG}(3, q)\), Austral. J. Combin. 47, 37–40 (2010). https://ajc.maths.uq.edu.au/pdf/47/ajc_v47_p037.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Davydov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of S. Marcugini and F. Pambianco was supported in part by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM) (Contract No. U-UFMBAZ-2019-000160, 11.02.2019) and by University of Perugia (Project No. 98751: Strutture Geometriche, Combinatoria e loro Applicazioni, Base Research Fund 2017-2019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, A.A., Marcugini, S. & Pambianco, F. Twisted cubic and plane-line incidence matrix in \(\mathrm {PG}(3,q)\). J. Geom. 113, 29 (2022). https://doi.org/10.1007/s00022-022-00644-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-022-00644-4

Keywords

Mathematics Subject Classification

Navigation