Log in

Three Dimensional Asymptotic Analysis of an Axisymmetric Flow in a Thin Tube with Thin Stiff Elastic Wall

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

An interaction between a thin cylindrical elastic tube and a viscous fluid filling the thin interior of the elastic tube is considered when the thickness of the elastic medium (\(\varepsilon \)) and that of the fluid domain (\(\varepsilon _1\)) are small parameters, with \(\varepsilon<<\varepsilon _1<<1\) while the scale of the longitudinal characteristic size is of order one. At the same time the magnitude of the stiffness and density of the elastic tube may be big or finite parameters with respect to the viscosity and density of the fluid when the characteristic time is of order one. A three dimensional asymptotic analysis is provided for an axisymmetric flow. The combination between the small parameters \(\varepsilon , \varepsilon _1\) on one hand and the Young’s modulus of the elastic medium and its density (presented as some powers of \(\varepsilon \)) on the other hand leads to the analysis of 10 different cases. Several examples of real world applications of the considered mathematical model are presented in the introduction. We show that the error between the exact solution and the truncated asymptotic solution of order K is small, so these estimates justify the asymptotic expansion. The leading term of the expansion is computed and compared to the Poiseuille flow. It gives a Poiseuille type solution for the fluid-structure interaction problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media, p. 352. Nauka, Moscow (1984). (in Russian; English transl., Kluwer, Dordrecht/Boston/London,1989, 366 pp)

    Google Scholar 

  2. Berntsson, F., Ghosh, A., Kozlov, V.A., Nazarov, S.A.: A one-dimensional model of blood flow through a curvilinear artery. Appl. Math. Model. 63, 633–643 (2018)

    Article  MathSciNet  Google Scholar 

  3. Boussinesq, J.: Essaii sur la Théorie des Eaux Courrantes. In: Mémoires Présentés par Divers Savants de l’Académie des Sciences de l’Institut de France. Impr. Nationale (1877)

  4. Čanić, S., Mikelić, A.: Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flowthrough small arteries. SIAM J. Appl. Dyn. Syst. 2, 431–463 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. Čanić, S., Tambača, J., Guidoboni, G., Mikelić, A., Hartley, C.J., Rosenstrauch, D.: Modeling viscoelastic behavior of arterial walls and their interaction with pulsate blood flow. SIAM J. Appl. Math. 67, 164–193 (2006)

    Article  MathSciNet  Google Scholar 

  6. Desjardins, B., Esteban, M.J., Grandmont, C., le Talec, P.: Weak solutions for a fluid-structure interaction model. Rev. Mat. Comput. 14, 523–538 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Elert, G.: The Physics Hypertextbook, (1998–2019). https://physics.info/viscosity

  8. Galdi, G.P., Pileckas, K., Silvestre, A.L.: On the unsteady Poiseuille flow in a pipe. Z. Angew. Mat. Phys. 58, 994–1007 (2007)

    Article  MathSciNet  Google Scholar 

  9. Gilbert, R.P., Mikelić, A.: Homogenizing the acoustic properties of the seabed: part I. Nonlin. Anal. Theory Methods Appl. 40, 185–212 (2000)

    Article  Google Scholar 

  10. Grandmont, C., Maday, Y.: Existence for an unsteady fluid-structure interaction problem. Math. Model. Numer. Anal. 34, 609–636 (2000)

    Article  MathSciNet  Google Scholar 

  11. Jacobsen, S., Haugan, L., Hammer, T.A., Kalogiannidis, E.: Flow conditions of fresh mortar and concrete in different pipes. Cem. Concr. Res. 39, 997–1006 (2009)

    Article  Google Scholar 

  12. Malakhova-Ziablova, I., Panasenko, G., Stavre, R.: Asymptotic analysis of a thin rigid stratified elastic plate–viscous fluid interaction problem. Appl. Anal. 95, 1467–1506 (2016)

    Article  MathSciNet  Google Scholar 

  13. Marieb, E.N., Hoehn, K.: The Cardiovascular System: Blood Vessels, Human Anatomy & Physiology, 9th edn. Pearson Education, London (2013)

    Google Scholar 

  14. Mayrovitz, H.N.: Skin capillary metrics and hemodinamics in the hairless mouse. Microvasc. Res. 43, 46–59 (1992)

    Article  Google Scholar 

  15. Mikelić, A., Guidoboni, G., Čanić, S.: Fluid-structure interaction in a pre-stressed tube with thick elastic walls. I. The stationary Stokes problem. Netw. Heterog. Media 2, 397–423 (2007)

    Article  MathSciNet  Google Scholar 

  16. Panasenko, G.P.: Multi-scale Modelling for Structures and Composites, p. 398. Springer, Dordrecht (2005)

    MATH  Google Scholar 

  17. Panasenko, G.P., Stavre, R.: Asymptotic analysis of a periodic flow in a thin channel with visco-elastic wall. J. Math. Pures Appl. 85, 558–579 (2006)

    Article  MathSciNet  Google Scholar 

  18. Panasenko, G.P., Sirakov, Y., Stavre, R.: Asymptotic and numerical modeling of a flow in a thin channel with visco-elastic wall. Int. J. Multiscale Comput. Eng. 5, 473–482 (2007)

    Article  Google Scholar 

  19. Panasenko, G.P., Stavre, R.: Asymptotic analysis of a non-periodic flow with variable viscosity in a thin elastic channel. Netw. Heterog. Media 5, 783–812 (2010)

    Article  MathSciNet  Google Scholar 

  20. Panasenko, G.P., Stavre, R.: Asymptotic analysis of a viscous fluid-thin plate interaction: periodic flow. Math. Models Methods Appl. Sci. 24, 1781–1822 (2014)

    Article  MathSciNet  Google Scholar 

  21. Panasenko, G.P., Stavre, R.: Viscous fluid-thin elastic plate interaction: asymptotic analysis with respect to the rigidity and density of the plate. Appl. Math. Optim. 81, 141–194 (2020)

    Article  MathSciNet  Google Scholar 

  22. Panasenko, G.P., Stavre, R.: Viscous fluid-thin cylindrical elastic body interaction: asymptotic analysis on contrasting properties. Appl. Anal. 98, 162–216 (2019)

    Article  MathSciNet  Google Scholar 

  23. Poiseuille, J.L.M.: Recherches sur les Causes du Mouvement du Sang dans les Vaisseaux Capillaires. Impr. Royale (1839)

  24. Roussel, N., Geiker, M., Dufour, F., Thrane, L., Szabo, P.: Computational modeling of concrete flow: general overview. Cem. Concr. Res. 37, 1298–1307 (2007)

    Article  Google Scholar 

  25. Şamandar, A., Gokçe, M.V.: Study of workability of fresh concrete using high range water reducer admixtures. Int. J. Phys. Sci. 7, 1097–1104 (2012)

    Google Scholar 

  26. Womersley, J.R.: Method of calculation of velocity, rate of the flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553–563 (1955)

    Article  Google Scholar 

Download references

Acknowledgements

The first author was supported by Russian Science Foundation Grant 19-11-00033. This article was written during the visit of the second author in Institute Camille Jordan, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Panasenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K. Pileckas

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panasenko, G.P., Stavre, R. Three Dimensional Asymptotic Analysis of an Axisymmetric Flow in a Thin Tube with Thin Stiff Elastic Wall. J. Math. Fluid Mech. 22, 20 (2020). https://doi.org/10.1007/s00021-020-0484-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-020-0484-8

Keywords

Mathematics Subject Classification

Navigation