Log in

Approaches to characterize the transcriptional trajectory of human myogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Human pluripotent stem cells (hPSCs) have attracted considerable interest in understanding the cellular fate determination processes and modeling a number of intractable diseases. In vitro generation of skeletal muscle tissues using hPSCs provides an essential model to identify the molecular functions and gene regulatory networks controlling the differentiation of skeletal muscle progenitor cells. Such a genetic roadmap is not only beneficial to understanding human myogenesis but also to decipher the molecular pathology of many skeletal muscle diseases. The combination of established human in vitro myogenesis protocols and newly developed molecular profiling techniques offers extensive insight into the molecular signatures for the development of normal and disease human skeletal muscle tissues. In this review, we provide a comprehensive overview of the current progress of in vitro skeletal muscle generation from hPSCs and relevant examples of the transcriptional landscape and disease-related transcriptional aberrations involving signaling pathways during the development of skeletal muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96(3):183–195. https://doi.org/10.1007/s00223-014-9915-y

    Article  CAS  PubMed  Google Scholar 

  2. Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22(16):2298–2314. https://doi.org/10.1089/scd.2012.0647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a008342

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ilic D, Ogilvie C (2017) Concise review: human embryonic stem cells-what have we done? what are we doing? where are we going? Stem Cells 35(1):17–25. https://doi.org/10.1002/stem.2450

    Article  CAS  PubMed  Google Scholar 

  5. Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J, Rubio ME, Topf N, Tabar V, Harrison NL, Beal MF, Moore MA, Studer L (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21(10):1200–1207. https://doi.org/10.1038/nbt870.nbt870[pii]

    Article  CAS  PubMed  Google Scholar 

  6. Tabar V, Panagiotakos G, Greenberg ED, Chan BK, Sadelain M, Gutin PH, Studer L (2005) Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 23(5):601–606. https://doi.org/10.1038/nbt1088.nbt1088[pii]

    Article  CAS  PubMed  Google Scholar 

  7. Tabar V, Tomishima M, Panagiotakos G, Wakayama S, Menon J, Chan B, Mizutani E, Al-Shamy G, Ohta H, Wakayama T, Studer L (2008) Therapeutic cloning in individual parkinsonian mice. Nat Med 14(4):379–381. https://doi.org/10.1038/nm1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S, Wolf DP, Mitalipov SM (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450(7169):497–502. https://doi.org/10.1038/nm1705

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  10. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317. https://doi.org/10.1038/nature05934

    Article  CAS  PubMed  Google Scholar 

  11. Wernig M, Lengner CJ, Hanna J, Lodato MA, Steine E, Foreman R, Staerk J, Markoulaki S, Jaenisch R (2008) A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol 26(8):916–924. https://doi.org/10.1038/nbt1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maherali N, Sridharan R, **e W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70. https://doi.org/10.1016/j.stem.2007.05.014

    Article  CAS  PubMed  Google Scholar 

  13. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. https://doi.org/10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  15. Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186. https://doi.org/10.1038/nprot.2008.92

    Article  CAS  PubMed  Google Scholar 

  16. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26(7):795–797. https://doi.org/10.1038/nbt1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221. https://doi.org/10.1126/science.1158799

    Article  CAS  PubMed  Google Scholar 

  18. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2008) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. https://doi.org/10.1038/nature07677

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage FH (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473(7346):221–225. https://doi.org/10.1038/nature09915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, Carson CT, Laurent LC, Marsala M, Gage FH, Remes AM, Koo EH, Goldstein LS (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482(7384):216–220. https://doi.org/10.1038/nature10821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C, Thompson J, Boue S, Fung HL, Sancho-Martinez I, Zhang K, Yates J 3rd, Izpisua Belmonte JC (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472(7342):221–225. https://doi.org/10.1038/nature09879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu GH, Suzuki K, Qu J, Sancho-Martinez I, Yi F, Li M, Kumar S, Nivet E, Kim J, Soligalla RD, Dubova I, Goebl A, Plongthongkum N, Fung HL, Zhang K, Loring JF, Laurent LC, Izpisua Belmonte JC (2011) Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8(6):688–694. https://doi.org/10.1016/j.stem.2011.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castella M, Rio P, Sleep E, Gonzalez F, Tiscornia G, Garreta E, Aasen T, Veiga A, Verma IM, Surralles J, Bueren J, Izpisua Belmonte JC (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460(7251):53–59. https://doi.org/10.1038/nature08129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee G, Papapetrou E, Kim H, Chambers S, Tomishima M, Fasano C, Ganat Y, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature. https://doi.org/10.1038/nature08320

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25(12):1468–1475. https://doi.org/10.1038/nbt1365

    Article  CAS  PubMed  Google Scholar 

  26. Lee G, Chambers SM, Tomishima MJ, Studer L (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5(4):688–701. https://doi.org/10.1038/nprot.2010.35

    Article  CAS  PubMed  Google Scholar 

  27. Lee G, Studer L (2010) Induced pluripotent stem cell technology for the study of human disease. Nat Methods 7(1):25–27. https://doi.org/10.1038/nmeth.f.283

    Article  CAS  PubMed  Google Scholar 

  28. Mukherjee-Clavin B, Mi R, Kern B, Choi IY, Lim H, Oh Y, Lannon B, Kim KJ, Bell S, Hur JK, Hwang W, Che YH, Habib O, Baloh RH, Eggan K, Brandacher G, Hoke A, Studer L, Kim YJ, Lee G (2019) Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nat Biomed Eng 3(7):571–582. https://doi.org/10.1038/s41551-019-0381-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426. https://doi.org/10.1016/j.tig.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  30. Yohe S, Thyagarajan B (2017) Review of clinical next-generation sequencing. Arch Pathol Lab Med 141(11):1544–1557. https://doi.org/10.5858/arpa.2016-0501-RA

    Article  CAS  PubMed  Google Scholar 

  31. Mikawa T, Poh AM, Kelly KA, Ishii Y, Reese DE (2004) Induction and patterning of the primitive streak, an organizing center of gastrulation in the amniote. Dev Dyn 229(3):422–432. https://doi.org/10.1002/dvdy.10458

    Article  PubMed  Google Scholar 

  32. Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10(2):91–103. https://doi.org/10.1038/nrm2618

    Article  CAS  PubMed  Google Scholar 

  33. Nagahara H, Ma Y, Takenaka Y, Kageyama R, Yoshikawa K (2009) Spatiotemporal pattern in somitogenesis: a non-Turing scenario with wave propagation. Phys Rev E Stat Nonlin Soft Matter Phys 80(2 Pt 1):021906. https://doi.org/10.1103/PhysRevE.80.021906

    Article  CAS  PubMed  Google Scholar 

  34. Grefte S, Kuijpers-Jagtman AM, Torensma R, Von den Hoff JW (2007) Skeletal muscle development and regeneration. Stem Cells Dev 16(5):857–868. https://doi.org/10.1089/scd.2007.0058

    Article  CAS  PubMed  Google Scholar 

  35. Yamaguchi TP, Takada S, Yoshikawa Y, Wu N, McMahon AP (1999) T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 13(24):3185–3190. https://doi.org/10.1101/gad.13.24.3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nowotschin S, Ferrer-Vaquer A, Concepcion D, Papaioannou VE, Hadjantonakis AK (2012) Interaction of Wnt3a, Msgn1 and Tbx6 in neural versus paraxial mesoderm lineage commitment and paraxial mesoderm differentiation in the mouse embryo. Dev Biol 367(1):1–14. https://doi.org/10.1016/j.ydbio.2012.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reshef R, Maroto M, Lassar AB (1998) Regulation of dorsal somitic cell fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression. Genes Dev 12(3):290–303. https://doi.org/10.1101/gad.12.3.290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao P, Hoffman EP (2004) Embryonic myogenesis pathways in muscle regeneration. Dev Dyn 229(2):380–392. https://doi.org/10.1002/dvdy.10457

    Article  CAS  PubMed  Google Scholar 

  39. Buas MF, Kabak S, Kadesch T (2009) Inhibition of myogenesis by Notch: evidence for multiple pathways. J Cell Physiol 218(1):84–93. https://doi.org/10.1002/jcp.21571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bajard L, Relaix F, Lagha M, Rocancourt D, Daubas P, Buckingham ME (2006) A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev 20(17):2450–2464. https://doi.org/10.1101/gad.382806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mayeuf-Louchart A, Lagha M, Danckaert A, Rocancourt D, Relaix F, Vincent SD, Buckingham M (2014) Notch regulation of myogenic versus endothelial fates of cells that migrate from the somite to the limb. Proc Natl Acad Sci USA 111(24):8844–8849. https://doi.org/10.1073/pnas.1407606111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97(4):1235–1294. https://doi.org/10.1152/physrev.00005.2017

    Article  CAS  PubMed  Google Scholar 

  43. Clevers H, Watt FM (2018) Defining adult stem cells by function, not by phenotype. Annu Rev Biochem 87:1015–1027. https://doi.org/10.1146/annurev-biochem-062917-012341

    Article  CAS  PubMed  Google Scholar 

  44. Post Y, Clevers H (2019) Defining adult stem cell function at its simplest: the ability to replace lost cells through mitosis. Cell Stem Cell 25(2):174–183. https://doi.org/10.1016/j.stem.2019.07.002

    Article  CAS  PubMed  Google Scholar 

  45. Judson RN, Rossi FMV (2020) Towards stem cell therapies for skeletal muscle repair. NPJ Regen Med 5:10. https://doi.org/10.1038/s41536-020-0094-3

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495. https://doi.org/10.1083/jcb.9.2.493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boldrin L, Muntoni F, Morgan JE (2010) Are human and mouse satellite cells really the same? J Histochem Cytochem 58(11):941–955. https://doi.org/10.1369/jhc.2010.956201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Birbrair A, Delbono O (2015) Pericytes are essential for skeletal muscle formation. Stem Cell Rev Rep 11(4):547–548. https://doi.org/10.1007/s12015-015-9588-6

    Article  PubMed  Google Scholar 

  49. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147. https://doi.org/10.1126/science.282.5391.1145

    Article  CAS  PubMed  Google Scholar 

  50. Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16(2):115–130. https://doi.org/10.1038/nrd.2016.245

    Article  CAS  PubMed  Google Scholar 

  51. Jiwlawat N, Lynch E, Jeffrey J, Van Dyke JM, Suzuki M (2018) Current progress and challenges for skeletal muscle differentiation from human pluripotent stem cells using transgene-free approaches. Stem Cells Int 2018:6241681. https://doi.org/10.1155/2018/6241681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carroll JA, Stewart PE, Rosa P, Elias AF, Garon CF (2003) An enhanced GFP reporter system to monitor gene expression in Borrelia burgdorferi. Microbiology 149(Pt 7):1819–1828. https://doi.org/10.1099/mic.0.26165-0

    Article  CAS  PubMed  Google Scholar 

  53. Lu C, Albano CR, Bentley WE, Rao G (2002) Differential rates of gene expression monitored by green fluorescent protein. Biotechnol Bioeng 79(4):429–437. https://doi.org/10.1002/bit.10295

    Article  CAS  PubMed  Google Scholar 

  54. Fehling HJ, Lacaud G, Kubo A, Kennedy M, Robertson S, Keller G, Kouskoff V (2003) Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130(17):4217–4227. https://doi.org/10.1242/dev.00589

    Article  CAS  PubMed  Google Scholar 

  55. Placantonakis DG, Tomishima MJ, Lafaille F, Desbordes SC, Jia F, Socci ND, Viale A, Lee H, Harrison N, Tabar V, Studer L (2009) BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage. Stem Cells 27(3):521–532. https://doi.org/10.1634/stemcells.2008-0884

    Article  CAS  PubMed  Google Scholar 

  56. Fernandez SL, Russell DW, Hurlin PJ (2007) Development of human gene reporter cell lines using rAAV mediated homologous recombination. Biol Proced Online 9:84–90. https://doi.org/10.1251/bpo136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27(9):851–857. https://doi.org/10.1038/nbt.1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761. https://doi.org/10.1534/genetics.110.120717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Choi IY, Lim H, Estrellas K, Mula J, Cohen TV, Zhang Y, Donnelly CJ, Richard JP, Kim YJ, Kim H, Kazuki Y, Oshimura M, Li HL, Hotta A, Rothstein J, Maragakis N, Wagner KR, Lee G (2016) Concordant but varied phenotypes among Duchenne muscular dystrophy patient-specific myoblasts derived using a human iPSC-based model. Cell Rep 15(10):2301–2312. https://doi.org/10.1016/j.celrep.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  63. Choi IY, Lim H, Cho HJ, Oh Y, Chou BK, Bai H, Cheng L, Kim YJ, Hyun S, Kim H, Shin JH, Lee G (2020) Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. Elife. https://doi.org/10.7554/eLife.46981

    Article  PubMed  PubMed Central  Google Scholar 

  64. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  PubMed  Google Scholar 

  65. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16–18. https://doi.org/10.1038/nmeth1156

    Article  CAS  PubMed  Google Scholar 

  66. Mutz KO, Heilkenbrinker A, Lonne M, Walter JG, Stahl F (2013) Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 24(1):22–30. https://doi.org/10.1016/j.copbio.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  67. Kiselev VY, Andrews TS, Hemberg M (2019) Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet 20(5):273–282. https://doi.org/10.1038/s41576-018-0088-9

    Article  CAS  PubMed  Google Scholar 

  68. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382. https://doi.org/10.1038/nmeth.1315

    Article  CAS  PubMed  Google Scholar 

  69. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lonnerberg P, Furlan A, Fan J, Borm LE, Liu Z, van Bruggen D, Guo J, He X, Barker R, Sundstrom E, Castelo-Branco G, Cramer P, Adameyko I, Linnarsson S, Kharchenko PV (2018) RNA velocity of single cells. Nature 560(7719):494–498. https://doi.org/10.1038/s41586-018-0414-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luecken MD, Theis FJ (2019) Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol 15(6):e8746. https://doi.org/10.15252/msb.20188746

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stratakis E (2018) Novel biomaterials for tissue engineering 2018. Int J Mol Sci. https://doi.org/10.3390/ijms19123960

    Article  PubMed  PubMed Central  Google Scholar 

  72. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  73. Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HE (2018) Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine 13:5637–5655. https://doi.org/10.2147/IJN.S153758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Khademhosseini A, Langer R (2016) A decade of progress in tissue engineering. Nat Protoc 11(10):1775–1781. https://doi.org/10.1038/nprot.2016.123

    Article  CAS  PubMed  Google Scholar 

  75. Koning M, Harmsen MC, van Luyn MJ, Werker PM (2009) Current opportunities and challenges in skeletal muscle tissue engineering. J Tissue Eng Regen Med 3(6):407–415. https://doi.org/10.1002/term.190

    Article  CAS  PubMed  Google Scholar 

  76. Gilbert-Honick J, Grayson W (2020) Vascularized and innervated skeletal muscle tissue engineering. Adv Healthc Mater 9(1):e1900626. https://doi.org/10.1002/adhm.201900626

    Article  CAS  PubMed  Google Scholar 

  77. Barberi T, Willis LM, Socci ND, Studer L (2005) Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med 2(6):e161. https://doi.org/10.1371/journal.pmed.0020161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tan JY, Sriram G, Rufaihah AJ, Neoh KG, Cao T (2013) Efficient derivation of lateral plate and paraxial mesoderm subtypes from human embryonic stem cells through GSKi-mediated differentiation. Stem Cells Dev 22(13):1893–1906. https://doi.org/10.1089/scd.2012.0590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV (2014) Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol 25(6):1211–1225. https://doi.org/10.1681/ASN.2013080831

    Article  CAS  PubMed  Google Scholar 

  80. Borchin B, Chen J, Barberi T (2013) Derivation and FACS-mediated purification of PAX3+/PAX7+ skeletal muscle precursors from human pluripotent stem cells. Stem Cell Rep 1(6):620–631. https://doi.org/10.1016/j.stemcr.2013.10.007

    Article  CAS  Google Scholar 

  81. Shelton M, Metz J, Liu J, Carpenedo RL, Demers SP, Stanford WL, Skerjanc IS (2014) Derivation and expansion of PAX7-positive muscle progenitors from human and mouse embryonic stem cells. Stem Cell Reports 3(3):516–529. https://doi.org/10.1016/j.stemcr.2014.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chal J, Oginuma M, Al Tanoury Z, Gobert B, Sumara O, Hick A, Bousson F, Zidouni Y, Mursch C, Moncuquet P, Tassy O, Vincent S, Miyanari A, Bera A, Garnier JM, Guevara G, Hestin M, Kennedy L, Hayashi S, Drayton B, Cherrier T, Gayraud-Morel B, Gussoni E, Relaix F, Tajbakhsh S, Pourquie O (2015) Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 33(9):962–969. https://doi.org/10.1038/nbt.3297

    Article  CAS  PubMed  Google Scholar 

  83. Barberi T, Bradbury M, Dincer Z, Panagiotakos G, Socci ND, Studer L (2007) Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 13(5):642–648. https://doi.org/10.1038/nm1533

    Article  CAS  PubMed  Google Scholar 

  84. Vauchez K, Marolleau JP, Schmid M, Khattar P, Chapel A, Catelain C, Lecourt S, Larghero J, Fiszman M, Vilquin JT (2009) Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities. Mol Ther 17(11):1948–1958. https://doi.org/10.1038/mt.2009.204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pisani DF, Clement N, Loubat A, Plaisant M, Sacconi S, Kurzenne JY, Desnuelle C, Dani C, Dechesne CA (2010) Hierarchization of myogenic and adipogenic progenitors within human skeletal muscle. Stem Cells 28(12):2182–2194. https://doi.org/10.1002/stem.537

    Article  PubMed  Google Scholar 

  86. Sakurai H, Sakaguchi Y, Shoji E, Nishino T, Maki I, Sakai H, Hanaoka K, Kakizuka A, Sehara-Fujisawa A (2012) In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells. PLoS ONE 7(10):e47078. https://doi.org/10.1371/journal.pone.0047078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Castiglioni A, Hettmer S, Lynes MD, Rao TN, Tchessalova D, Sinha I, Lee BT, Tseng YH, Wagers AJ (2014) Isolation of progenitors that exhibit myogenic/osteogenic bipotency in vitro by fluorescence-activated cell sorting from human fetal muscle. Stem Cell Rep 2(1):92–106. https://doi.org/10.1016/j.stemcr.2013.12.006

    Article  CAS  Google Scholar 

  88. Meng J, Chun S, Asfahani R, Lochmuller H, Muntoni F, Morgan J (2014) Human skeletal muscle-derived CD133(+) cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice. Mol Ther 22(5):1008–1017. https://doi.org/10.1038/mt.2014.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Uezumi A, Fukada S, Yamamoto N, Ikemoto-Uezumi M, Nakatani M, Morita M, Yamaguchi A, Yamada H, Nishino I, Hamada Y, Tsuchida K (2014) Identification and characterization of PDGFRalpha+ mesenchymal progenitors in human skeletal muscle. Cell Death Dis 5:e1186. https://doi.org/10.1038/cddis.2014.161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Demestre M, Orth M, Fohr KJ, Achberger K, Ludolph AC, Liebau S, Boeckers TM (2015) Formation and characterisation of neuromuscular junctions between hiPSC derived motoneurons and myotubes. Stem Cell Res 15(2):328–336. https://doi.org/10.1016/j.scr.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  91. Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, Karumbayaram S, Kumagai-Cresse C, Wang D, Zack JA, Kohn DB, Nakano A, Nelson SF, Miceli MC, Spencer MJ, Pyle AD (2016) A Single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 18(4):533–540. https://doi.org/10.1016/j.stem.2016.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hicks MR, Hiserodt J, Paras K, Fujiwara W, Eskin A, Jan M, ** H, Young CS, Evseenko D, Nelson SF, Spencer MJ, Handel BV, Pyle AD (2018) ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs. Nat Cell Biol 20(1):46–57. https://doi.org/10.1038/s41556-017-0010-2

    Article  CAS  PubMed  Google Scholar 

  93. Sakai-Takemura F, Narita A, Masuda S, Wakamatsu T, Watanabe N, Nishiyama T, Nogami K, Blanc M, Takeda S, Miyagoe-Suzuki Y (2018) Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors. Sci Rep 8(1):6555. https://doi.org/10.1038/s41598-018-24959-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu J, Matthias N, Lo J, Ortiz-Vitali JL, Shieh AW, Wang SH, Darabi R (2018) A myogenic double-reporter human pluripotent stem cell line allows prospective isolation of skeletal muscle progenitors. Cell Rep 25(7):1966–1981. https://doi.org/10.1016/j.celrep.2018.10.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chambers SM, Qi Y, Mica Y, Lee G, Zhang XJ, Niu L, Bilsland J, Cao L, Stevens E, Whiting P, Shi SH, Studer L (2012) Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol 30(7):715–720. https://doi.org/10.1038/nbt.2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Diaz-Cuadros M, Wagner DE, Budjan C, Hubaud A, Tarazona OA, Donelly S, Michaut A, Al Tanoury Z, Yoshioka-Kobayashi K, Niino Y, Kageyama R, Miyawaki A, Touboul J, Pourquie O (2020) In vitro characterization of the human segmentation clock. Nature 580(7801):113–118. https://doi.org/10.1038/s41586-019-1885-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu J, Hunt SD, Xue H, Liu Y, Darabi R (2016) Generation and validation of PAX7 reporter lines from human iPS cells using CRISPR/Cas9 technology. Stem Cell Res 16(2):220–228. https://doi.org/10.1016/j.scr.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  98. Al Tanoury Z, Rao J, Tassy O, Gobert B, Gapon S, Garnier JM, Wagner E, Hick A, Hall A, Gussoni E, Pourquie O (2020) Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage in vitro. Development. https://doi.org/10.1242/dev.187344

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wu J, Hunt SD, Xue H, Liu Y, Darabi R (2016) Generation and characterization of a MYF5 reporter human iPS cell line using CRISPR/Cas9 mediated homologous recombination. Sci Rep 6:18759. https://doi.org/10.1038/srep18759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Magli A, Perlingeiro RRC (2017) Myogenic progenitor specification from pluripotent stem cells. Semin Cell Dev Biol 72:87–98. https://doi.org/10.1016/j.semcdb.2017.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sharma VP, Fenwick AL, Brockop MS, McGowan SJ, Goos JA, Hoogeboom AJ, Brady AF, Jeelani NO, Lynch SA, Mulliken JB, Murray DJ, Phipps JM, Sweeney E, Tomkins SE, Wilson LC, Bennett S, Cornall RJ, Broxholme J, Kanapin A, Whole-Genome Sequences C, Johnson D, Wall SA, van der Spek PJ, Mathijssen IM, Maxson RE, Twigg SR, Wilkie AO (2013) Mutations in TCF12, encoding a basic helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis. Nat Genet 45(3):304–307. https://doi.org/10.1038/ng.2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Murphy C, Withrow J, Hunter M, Liu Y, Tang YL, Fulzele S, Hamrick MW (2018) Emerging role of extracellular vesicles in musculoskeletal diseases. Mol Aspects Med 60:123–128. https://doi.org/10.1016/j.mam.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  103. Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RC (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10(5):610–619. https://doi.org/10.1016/j.stem.2012.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Darabi R, Gehlbach K, Bachoo RM, Kamath S, Osawa M, Kamm KE, Kyba M, Perlingeiro RC (2008) Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med 14(2):134–143. https://doi.org/10.1038/nm1705

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Lee lab for providing valuable discussions.

Funding

This work was supported by NIH grants R01NS093213 (GL), R01AR070751 (GL), the Maryland Stem Cell Research Fund (MSCRF) (GL), the Muscular Dystrophy Association (MDA) (GL), and the Global Research Development Center Program from the National Research Foundation of Korea (NRF) (2017K1A4A3014959, G.L. & S.-H.H.).

Author information

Authors and Affiliations

Authors

Contributions

HTL analyzed the published data and wrote the manuscript. IYC wrote the manuscript. HK wrote the manuscript. SHH over-saw data interpretation and contributed to writing the manuscript. GL designed the review paper and wrote the manuscript.

Corresponding author

Correspondence to Gabsang Lee.

Ethics declarations

Conflicts of interest

GL is a founder of the Vita Therapeutics. IYC, HTL and GL are shareholders of the Vita Therapeutics. SHH and HK declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, H., Choi, I.Y., Hyun, SH. et al. Approaches to characterize the transcriptional trajectory of human myogenesis. Cell. Mol. Life Sci. 78, 4221–4234 (2021). https://doi.org/10.1007/s00018-021-03782-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03782-1

Keywords

Navigation