Log in

Stochastic Quasi-Interpolation with Bernstein Polynomials

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce the notion “stochastic quasi-interpolation on compact Hausdorff spaces”, and establish Gaussian-type \(L^p\)-concentration inequalities (\(1 \le p \le \infty \)) for stochastic Bernstein polynomials in terms of the modulus of continuity of a target function \(f \in C[0,1]\). For p in the range \(1 \le p < \infty ,\) these inequalities hold true unconditionally in the sense that no additional assumption on a given target function is required. For the case \(p=\infty \), our proof calls for a crucial application of Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky et al. in Ann Math Stat 27(3):642–669, 1956; Massart in Ann Probab 18(3):1269–1283, 1990) , and requires a moderate decay condition on the modulus of continuity. Our result for the case \(p=\infty \) confirms a similar conjecture raised in Sun and Wu (Proc Am Math Soc 147(2):671–679, 2019). As a corollary, we show that for all \(1 \le p \le \infty \) the expected \(L^p\)-approximation order of stochastic Bernstein polynomials is comparable to that given by the classical Bernstein polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Let us take a brief moment off the main topic here to reflect on making a list of standard criteria in evaluating the robustness of a stochastic approximation operator. We suggest it be on the list that the expected approximation power of the stochastic operator matches that of a standard deterministic operator.

  2. The type of exponential decay rates we derive here is often referred to as Gaussian tail bounds.

References

  1. Adell, J.A., Cardenas-Morales, D.: Stochastic Bernstein polynomials: uniform convergence in probability with rates. Adv. Comput. Math. 46, 16 (2020)

    Article  MathSciNet  Google Scholar 

  2. Birnbaum, Z.W., McCarty, R.C.: A distribution-free upper confidence bound for \(\text{ Pr }\{Y<X\}\), based on independent samples of \(X\) and \(Y\). Ann. Math. Stat. 29, 558–562 (1958)

    Article  MathSciNet  Google Scholar 

  3. Bobkov, S., Ledoux, M.: One-dimensional empirical measures, order statistics and Kantorovich transport distances. Mem. Am. Math. Soc. 261, 1259 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  5. Bourgain, J., Lindenstrauss, J.: Distribution of points on spheres and approximation by zonotopes. Israel J. Math. 64, 25–31 (1988)

    Article  MathSciNet  Google Scholar 

  6. Bourgain, J., Lindenstrauss, J., Milman, V.: Approximation of zonoids by zonotopes. Acta Math. 162, 73–141 (1989)

    Article  MathSciNet  Google Scholar 

  7. Bourgain, J., Lindenstrauss, J.: Approximating the ball by a Minkowski sum of segments with equal length. Discret. Comput. Geom. 9, 131–144 (1993)

    Article  MathSciNet  Google Scholar 

  8. Buldygin, V.V., Kozachenko, I.V.: Metric Characterization of Random Variables and Random Processes, Translations of Mathematical Monographs, vol. 188. American Mathematical Society, Providence (2000)

    Book  Google Scholar 

  9. Casella, G., Berger, R.: Statistical Reference, 2nd ed, Duxbury Advanced Series (2002)

  10. Cenusa, Gh., Sacuiu, I.: On some stochastic approximations for random functions. Rend. Mat. (Roma) Ser. VI 12, 143–156 (1979)

    MathSciNet  MATH  Google Scholar 

  11. Cheney, E.W.: Introduction to Approximation Theory, 2nd edn. Chelsea, New York (1982)

    MATH  Google Scholar 

  12. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bull. (New Ser.) Am. Math. Soc. 39, 1–49 (2001)

    Article  MathSciNet  Google Scholar 

  13. Cucker, F., Zhou, D.X.: Learning Theory: An Approximation Theory Viewpoint. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  14. David, H.A., Nagaraja, H.N.: Order Statistics, Wiley Series in Probability and Statistics, 3rd edn. Wiley, Hoboken (2003)

    Google Scholar 

  15. Ditzian, Z., Ivanov, K.G.: Strong converse inequalities. J. Anal. Math. 61, 61–111 (1993)

    Article  MathSciNet  Google Scholar 

  16. Ditzian, Z., Totik, V.: Moduli of Smoothness. Springer, Berlin (2012)

    MATH  Google Scholar 

  17. Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat. 27(3), 642–669 (1956)

    Article  MathSciNet  Google Scholar 

  18. Gal, S.G.: Jackson type estimates in the approximation of random functions by random polynomials. Rend. Mat. Appl. Roma 4, 543–556 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Gal, S.G.: Approximation Theory in Random Setting, Chapter 12 in Handbook of Analytic Computational Methods in Applied Mathematics, pp. 571–616. Chapman and Hall, Boca Raton (2000)

    Google Scholar 

  20. Gal, S.G., Niculescu, P.C.: Approximation of random functions by stochastic Bernstein polynomials in capacity spaces. Carpathian J. Math. 37(2), 185–194 (2021)

    Article  MathSciNet  Google Scholar 

  21. Gao, W., Sun, X., Wu, Z., Zhou, X.: Multivariate Monte Carlo approximation based on scattered data. SIAM J. Sci. Comput. 42, 2262–2280 (2020)

    Article  MathSciNet  Google Scholar 

  22. Gavrea, I., Ivan, M.: The Bernstein Voronovskaja-type theorem for positive linear operators. J. Approx. Theory 192, 291–296 (2015)

    Article  MathSciNet  Google Scholar 

  23. Ignatov, Z.G., Mills, T.M., Tzankova, I.P.: On the rate of approximation of random functions. Serdica Bulg. Math. Publ. 18, 240–247 (1992)

    MathSciNet  MATH  Google Scholar 

  24. Kamolov, A.I.: On exact estimates of approximation of random processes (in Russian). Dokl. Akad. Nauk UzSSR 11, 4–6 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Lorentz, G.G.: Bernstein Polynomials, Mathematical Expositions, vol. 8. University of Toronto Press, Toronto (1953)

    Google Scholar 

  26. Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18(3), 1269–1283 (1990)

    Article  MathSciNet  Google Scholar 

  27. Niederrreiter, H.: On the existence of uniformly distributed sequences in compact spaces. Compos. Math. 25(1), 93–99 (1972)

    MathSciNet  Google Scholar 

  28. Marchal, O., Arbel, J.: On the sub-Gaussianity of the Beta and Dirichlet distributions. Electron. Commun. Probab. 22(54), 1–14 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Onicescu, O., Istratescu, V.I.: Approximation theorems for random functions. Rend. Mat. (Roma) Ser. VI 8, 65–81 (1975)

    MathSciNet  MATH  Google Scholar 

  30. Onicescu, O., Istratescu, V.I.: Approximation theorems for random functions. II. Rend. Mat. (Roma) Ser. VI 11(4), 585–589 (1978)

    MathSciNet  MATH  Google Scholar 

  31. Sikkema, P.C.: Der Wert einiger Konstanten in der Theorie der Approximation mit Bernstein-Polynomen, (German). Numer. Math. 3, 107–116 (1961)

    Article  MathSciNet  Google Scholar 

  32. Sikkema, P.C.: Über den Grad der approximation mit Bernstein-Polynomen (German). Numer. Math. 1, 221–239 (1959)

    Article  MathSciNet  Google Scholar 

  33. Sun, X., Wu, Z.: Chebyshev type inequality for stochastic Bernstein polynomials. Proc. Am. Math. Soc. 147(2), 671–679 (2019)

    Article  MathSciNet  Google Scholar 

  34. Sun, X., Wu, Z., Zhou, X.: On probabilistic convergence rates of stochastic Bernstein polynomials. Math. Comp. 90(328), 813–830 (2021)

    Article  MathSciNet  Google Scholar 

  35. Totik, V.: Approximation by Bernstein polynomials. Am. J. Math. 116, 995–1018 (1994)

    Article  MathSciNet  Google Scholar 

  36. Vitale, R.A.: A Bernstein polynomial approach to density function estimation, statistical inference and related topics 2. In: Proceedings of the Summer Research Institute on Statistical Inference for Stochastic Processes, Bloomington, Indiana, July 31–August 9, pp. 87–99 (1975)

  37. Wagner, G.: On a new method for constructing good point sets on spheres. Discret. Comput. Geom. 9, 111–129 (1993)

    Article  MathSciNet  Google Scholar 

  38. Wu, Z., Sun, X., Ma, L.: Sampling scattered data with Bernstein polynomials: stochastic and deterministic error estimates. Adv. Comput. Math. 38, 187–205 (2013)

    Article  MathSciNet  Google Scholar 

  39. Wu, Z., Zhou, X.: Polynomial convergence order of stochastic Bernstein approximation. Adv. Comput. Math. 46, 25 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Professor Zongmin Wu, Fudan University, for fruitful discussions on topics related to the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ** Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhou, X. Stochastic Quasi-Interpolation with Bernstein Polynomials. Mediterr. J. Math. 19, 240 (2022). https://doi.org/10.1007/s00009-022-02150-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-022-02150-y

Keywords

Mathematics Subject Classification

Navigation