Recent Advances of Using Innovative Strategies in Management of Millet Plant Pathogens

  • Chapter
  • First Online:
Genetic improvement of Small Millets

Abstract

Finger millet is a nutritious cereal crop cultivated traditionally in Africa, Asia, and America. It is the second most important cereal crop in India, where it is grown on more than 2.6 million hectares and produces 3.0 million tonnes annually. Finger millet grains are rich in protein, fiber, minerals (calcium, iron, zinc), and amino acids (tryptophan, cysteine, and methionine), and have potential health benefits. However, finger millet production is threatened by various pests and diseases, which can cause significant yield losses and quality deterioration. Climate change may increase these challenges by creating favorable conditions for pest and disease outbreaks or creating unsuitable conditions during production leading to a decrease in cereal yield. Therefore, there is a need to compare and evaluate different pest management strategies for finger millet cultivation and their impact on yield, quality, and sustainability. In this chapter, we aim to review the current literature on finger millet pests and disease management and to identify the most effective and environmentally friendly methods and solutions. Our chapter contributes to the knowledge and practice of sustainable finger millet production and food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akanmu AO, Abiala MA, Akanmu AM, Adedeji AD, Mudiaga PM, Odebode AC (2013) Plant extracts abated pathogenic fusarium species of millet seedlings. Arch Phytopathol Plant Protect 46(10):1189–1205

    Article  Google Scholar 

  • Babu TK, Thakur RP, Upadhyaya HD, Reddy PN, Sharma R, Girish AG, Sarma NDRK (2013) Resistance to blast (Magnaporthegrisea) in a mini-core collection of finger millet germplasm. Eur J Plant Pathol 135(2):299–311

    Article  Google Scholar 

  • Basavaraj GL, Murali M, Lavanya SN, Amruthesh KN (2019) Seed priming with biotic agents invokes defense response and enhances plant growth in pearl millet upon infection with Magnaporthegrisea. Biocatal Agric Biotechnol 21:101279

    Article  Google Scholar 

  • Bdliya BS, Muhammad AS (2007) Effect of inter-crop** millet with groundnut on the control of cercospora leaf spot of groundnut in The Sudan savanna of North-Eastern Nigeria. J Sustain Agric 29(2):19–41

    Article  Google Scholar 

  • Brankatschk G, Finkbeiner M (2017) Crop rotations and crop residues are relevant parameters for agricultural carbon footprints. Agron Sustain Dev 37(6). https://doi.org/10.1007/s13593-017-0464-4

  • Bybee-Finley KA, Ryan MR (2018) Advancing intercrop** research and practices in industrialized agricultural landscapes. Agriculture (Switzerland). https://doi.org/10.3390/agriculture8060080

  • Chakraborty M, Islam T (2022) Antifungal secondary metabolites against blast fungus. In: Antifungal metabolites of rhizobacteria for sustainable agriculture. Springer, Cham, pp 23–51

    Chapter  Google Scholar 

  • Chakraborty M, Mahmud NU, Muzahid ANM, Rabby SF, Islam T (2020) Oligomycins inhibit Magnaportheoryzae Triticum and suppress wheat blast disease. PLoS One 15(8):e0233665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty M, Mahmud NU, Ullah C, Rahman M, Islam T (2021) Biological and biorational management of blast diseases in cereals caused by Magnaportheoryzae. Crit Rev Biotechnol 41(7):994–1022

    Article  CAS  PubMed  Google Scholar 

  • Chala A, Taye W, Ayalew A, Krska R, Sulyok M, Logrieco A (2014) Multimycotoxin analysis of sorghum (Sorghum bicolor L. Moench) and finger millet (Eleusine coracana L. Garten) from Ethiopia. Food Control 45:29–35

    Article  CAS  Google Scholar 

  • Chamberlain LA, Bolton ML, Cox MS, Suen G, Conley SP, Ané JM (2020) Crop rotation, but not cover crops, influenced soil bacterial community composition in a corn-soybean system in southern Wisconsin. Appl Soil Ecol 154. https://doi.org/10.1016/j.apsoil.2020.103603

  • Choi JH, Nah JY, Lee MJ, Jang JY, Lee T, Kim J (2021) Fusarium diversity and mycotoxin occurrence in proso millet in Korea. LWT 141:110964

    Article  CAS  Google Scholar 

  • Das IK, Nagaraja A, Tonapi VA (2016) Diseases of millets-a ready reckoner. 67pp.

    Google Scholar 

  • De Waele D, McDonald AH, Jordaan EM, Orion D, Van den Berg E, Loots G (1998) Plant-parasitic nematodes associated with maize and pearl millet in Namibia. Afr Plant Protect 4(2):113–117

    Google Scholar 

  • Elobu P, Adipala E (1993) Prevalence of finger millet diseases in Kaberamaido Subcounty, Soroti District, Uganda. Uganda J Agric Sci 1(1):13–19

    Google Scholar 

  • Gashaw G, Alemu T, Tesfaye K (2014) Evaluation of disease incidence and severity and yield loss of finger millet varieties and mycelial growth inhibition of Pyriculariagrisea isolates using biological antagonists and fungicides in vitro condition. J Appl Biosci 73:5883–5901

    Google Scholar 

  • Gessese MK (2019) Description of wheat rusts and their virulence variations determined through annual pathotype surveys and controlled multi-pathotype tests. Adv Agric 2019:1–7

    Google Scholar 

  • Govind SR, Jogaiah S, Abdelrahman M, Shetty HS, Tran LSP (2016) Exogenous trehalose treatment enhances the activities of defense-related enzymes and triggers resistance against downy mildew disease of pearl millet. Front Plant Sci 7:1593

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyal A, Manoharachary C (eds) (2014) Future challenges in crop protection against fungal pathogens. Springer, New York, p 364p

    Google Scholar 

  • Gupta SC (1992) SADCC ICRISAT Sorghum and Millets Improvement Program. In: Integrated Agricultural Research: proceedings of the SACCAR/Winrock Workshop held in Lilongwe, Malawi, 26 Nov.–1 Dec. 1989. IDRC, Ottawa, ON, CA

    Google Scholar 

  • Halbert SE, Baker CA (2015) Banana bunchy top virus and its vector Pentalonia nigronervosa (Hemiptera: Aphididae). Pathol Circ 417:1–7

    Google Scholar 

  • Hanna WW, Wells HD (1989) Inheritance of Pyricularia leaf spot resistance in pearl millet. J Hered 80(2):145–147

    Article  Google Scholar 

  • Hong Y, Berentsen P, Heerink N, Shi M, van der Werf W (2019) The future of intercrop** under growing resource scarcity and declining grain prices - a model analysis based on a case study in Northwest China. Agric Syst 176. https://doi.org/10.1016/j.agsy.2019.102661

  • Iqbal MA, Hamid A, Ahmad T, Siddiqui MH, Hussain I, Ali S et al (2019) Forage sorghum-legumes intercrop**: effect on growth, yields, nutritional quality and economic returns. Bragantia 78(1):82–95. https://doi.org/10.1590/1678-4499.2017363

    Article  CAS  Google Scholar 

  • Jain AK (2009) Nematode pests of small millets—a review. Agric Rev 30(2):132–138

    Google Scholar 

  • Javaid ARSHAD, Latif UMAIR, Akhtar N, Ahmed D, Perveen SHAGUFTA (2018) Molecular characterization of fusarium moniliforme and its management by methanolic extract of Coronopusdidymus. Pak J Bot 50(5):2069–2075

    CAS  Google Scholar 

  • Jayo, T. M. (2021). Host plant resistance and characterization of blast disease (PyriculariaGrisea) in selected finger millet (Eleusine Coracana L.) genotypes in Kenya (Doctoral dissertation, Egerton University)

    Google Scholar 

  • Jones et al (2021) Virus diseases of cereal and oilseed crops in Australia: current position and future challenges. Viruses. https://doi.org/10.3390/v13102051

  • Jogaiah S, Mitani S, KesturNagaraj A, HuntrikeShekar S (2007) Activity of cyazofamid against Sclerosporagraminicola, a downy mildew disease of pearl millet. Pest Manag Sci 63(7):722–727

    Article  CAS  PubMed  Google Scholar 

  • Jurjevic Z, Wilson DM, Wilson JP, Geiser DM, Juba JH, Mubatanhema W et al (2005) Fusarium species of the Gibberellafujikuroi complex and fumonisin contamination of pearl millet and corn in Georgia, USA. Mycopathologia 159(3):401–406

    Article  CAS  PubMed  Google Scholar 

  • Kiran K, Linguraju S, Adiver S (2006) Effect of plant extract on Sclerotium rolfsii, the incitant of stem rot of ground nut. J Mycol Plant Pathol 36(1):77–79

    Google Scholar 

  • Kountche BA, Hash CT, Dodo H, Laoualy O, Sanogo MD, Timbeli A, Haussmann BI (2013) Development of a pearl millet Striga-resistant genepool: response to five cycles of recurrent selection under Striga-infested field conditions in West Africa. Field Crops Res 154:82–90

    Article  Google Scholar 

  • Kumar B, Singh KP (2010) Important small millets diseases in India and their management. Plant Pathology Section, College of Forestry and Hill Agriculture, Hill Campus, Ranichauri, TehriGarhwal, Uttarakhand.

    Google Scholar 

  • Kumar B, Srivastava JN (2020) Barnyard millet/Japanese millet or Sawan (Echinochloafrumentacea L.)diseases and their management strategies. In: Diseases of field crops: diagnosis and management. Apple Academic Press, pp 195–204

    Chapter  Google Scholar 

  • Kumar PL, Cuervo M, Kreuze JF, Muller G, Kulkarni G, Kumari SG et al (2021) Phytosanitary interventions for safe global germplasm exchange and the prevention of transboundary pest spread: the role of CGIAR germplasm health units. Plan Theory 10(2):328

    Google Scholar 

  • Lavanya SN, Niranjan-Raj S, Nayaka SC, Amruthesh KN (2017) Systemic protection against pearl millet downy mildew disease induced by cell wall glucan elicitors from Trichoderma hamatum UOM 13. J Plant Protect Res

    Google Scholar 

  • Leslie JF, Zeller KA, Lamprecht SC, Rheeder JP, Marasas WF (2005) Toxicity, pathogenicity, and genetic differentiation of five species of fusarium from sorghum and millet. Phytopathology 95(3):275–283

    Article  CAS  PubMed  Google Scholar 

  • Li ZY, Dong ZP, Wang N, Dong L, Bai H, Quan JZ, Liu L (2014) First report of foxtail millet seedling dam**-off caused by binucleate rhizoctonia AG-A in China. Plant Dis 98(11):1587–1587

    Article  CAS  PubMed  Google Scholar 

  • Li J, Huang L, Zhang J, Coulter JA, Li L, Gan Y (2019) Diversifying crop rotation improves system robustness. Agron Sustain Dev 39(4). https://doi.org/10.1007/s13593-019-0584-0

  • Maitra S, Hossain A, Brestic M, Skalicky M, Ondrisik P, Gitari H et al (2021) Intercrop**—a low input agricultural strategy for food and environmental security. Agronomy 11(2):343. https://doi.org/10.3390/agronomy11020343

    Article  CAS  Google Scholar 

  • Mbwaga AM, Mdolwa SI (1995) Diseases and parasitic weeds of pearl millet in Tanzania with emphasis on screening for ergot resistance. In: breeding for disease resistance with emphasis on durability. Proceedings of a regional workshop for eastern, central and southern Africa, held at Njoro, Kenya, October 2–6, 1994. (pp. 239–243). LandbouwuniversiteitWageningen (Wageningen Agricultural University)

    Google Scholar 

  • Mgonja MA, Lenne JM, Manyasa E, Sreenivasaprasad S (eds.) (2007). Finger millet blast management in East Africa: creating opportunities for improving production and utilization of finger millet: proceedings of the first International finger millet stakeholder workshop, Nairobi (pp. 1–192). (International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, AP, India) ISBN: 978–92–9066-505-2

    Google Scholar 

  • Mtisi E, de Milliano WAJ (1993) False mildew on pearl millet and other hosts in Zimbabwe. East Afr Agric Forestry J 59(2):145–153

    Article  Google Scholar 

  • Murali M, Amruthesh KN (2015) Plant growth-promoting fungus Penicilliumoxalicum enhances plant growth and induces resistance in pearl millet against downy mildew disease. J Phytopathol 163(9):743–754

    Article  CAS  Google Scholar 

  • Murali M, Sudisha J, Amruthesh KN, Ito SI, Shetty HS (2013) Rhizosphere fungus Penicilliumchrysogenum promotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biol 15(1):111–118

    Article  CAS  PubMed  Google Scholar 

  • Mushonga JN (1983) Screening for ergot in pearl millet of five inbreds and one hybrid for a breeding programme. Zimbabwe Agric J 80(6):239–241

    Google Scholar 

  • Nandini B, Hariprasad P, Prakash HS, Geetha N (2017a) Trichoderma oligosaccharides priming mediates resistance responses in pearl millet against downy mildew pathogen. J Appl Biol Biotechnol 5(2):97–103

    CAS  Google Scholar 

  • Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N (2017b) Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerosporagraminicola in pearl millet. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Nandini B, Puttaswamy H, Prakash HS, Adhikari S, Jogaiah S, Nagaraja G (2019) Elicitation of novel trichogenic-lipid nanoemulsion signaling resistance against pearl millet downy mildew disease. Biomol Ther 10(1):25

    Google Scholar 

  • Navi SS, Singh SD (1993) Fusarium longipes: a mycoparasite of Sclerosporagraminicola on pearl millet. Indian Phytopathol 46(4):365–368

    Google Scholar 

  • Nirenberg HI, O'Donnell K (1998) New Fusarium species and combinations within the Gibberellafujikuroi species complex. Mycologia 90(3):434–458

    Article  Google Scholar 

  • Numan M, Serba DD, Ligaba-Osena A (2021) Alternative strategies for multi-stress tolerance and yield improvement in millets. Genes 12(5):739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okigbo BN, Greenland DJ (1976) Intercrop** systems in tropical Africa. Mult Crop 27:63–101. https://doi.org/10.2134/asaspecpub27.c5

    Article  Google Scholar 

  • Onyike NB, Nelson PE, Marasas WFO (1991) Fusarium species associated with millet grain from Nigeria, Lesotho, and Zimbabwe. Mycologia 83(6):708–712

    Article  Google Scholar 

  • Patil JV (ed) (2016) Millets and sorghum: biology and genetic improvement. John Wiley & Sons. 463 pp

    Google Scholar 

  • Poonacha TT, Bhavana CS, Ramesh GV, Gavayi N, Koti PS, Palanna KB, Rajashekara H, Rajesh G, Das IK (2023) Blast disease of millets: present status and future perspectives. https://doi.org/10.5772/intechopen.111392

  • Ryley MJ, Persley DM, Jordan DR, Henzell RG (2002). Status of sorghum and pearl millet diseases in Australia. Sorghum and millets diseases, pp. 441–448.

    Google Scholar 

  • Serba DD, Perumal R, Tesso TT, Min D (2017) Status of global pearl millet breeding programs and the way forward. Crop Sci 57(6):2891–2905. https://doi.org/10.2135/cropsci2016.11.0936

    Article  Google Scholar 

  • Seifers DL, Harvey TL, Kofoid KD, Stegmeier WD (1996) Natural infection of pearl millet and sorghum by wheat streak mosaic virus in Kansas. Plant Dis 80:179–180. https://www.apsnet.org/publications/PlantDisease/BackIssues/Documents/1996Abstracts/PD_80_179.htm

    Article  Google Scholar 

  • Sharma D, Jamra G, Singh UM, Sood S, Kumar A (2017) Calcium biofortification: three pronged molecular approaches for dissecting complex trait of calcium nutrition in finger millet (Eleusine coracana) for devising strategies of enrichment of food crops. Front Plant Sci 7:2028

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Sharma S, Gate VL (2020) Tap** Pennisetum violaceum, a wild relative of pearl millet (Pennisetum glaucum), for resistance to blast (caused by Magnaporthe grisea) and rust (caused by Puccinia substriata var. indica). Plant Dis 104(5):1487–1491. https://doi.org/10.1094/PDIS-08-19-1602-RE

    Article  PubMed  Google Scholar 

  • Sharma S, Sharma R, Govindaraj M, Mahala RS, Satyavathi CT, Srivastava RK et al (2021) Harnessing wild relatives of pearl millet for germplasm enhancement: challenges and opportunities. Crop Sci 61(1):177–200

    Article  CAS  Google Scholar 

  • Siddaiah CN, Prasanth KVH, Satyanarayana NR, Mudili V, Gupta VK, Kalagatur NK et al (2018) Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Sci Rep 8(1):1–14

    Article  CAS  Google Scholar 

  • Steiner B, Buerstmayr M, Michel S, Schweiger W, Lemmens M, Buerstmayr H (2017) Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop Plant Pathol 42:165–174

    Article  Google Scholar 

  • Sudisha J, Amruthesh KN, Deepak SA, Shetty NP, Sarosh BR, Shetty HS (2005) Comparative efficacy of strobilurin fungicides against downy mildew disease of pearl millet. Pestic Biochem Physiol 81(3):188–197

    Article  CAS  Google Scholar 

  • Thakur RP, Rao VP, Williams RJ, Chahal SS, Mathur SB, Pawar NB, Nafade SD, Shetty HS, Singh G, Bangar SG (1985) Identification of stable resistance to ergot in pearl millet. Plant Dis 69(11):982–985

    Article  Google Scholar 

  • Thakur RP, Singh SD, King SB (1988) Registration of four populations of pearl millet germplasm with multiple disease resistance. Crop Sci 28(2):381–382

    Article  Google Scholar 

  • Vismer HF, Shephard GS, Van der Westhuizen L, Mngqawa P, Bushula-Njah V, Leslie JF (2019) Mycotoxins produced by fusarium proliferatum and F. Pseudonygamai on maize, sorghum and pearl millet grains in vitro. Int J Food Microbiol 296:31–36

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sozan E. El-Abeid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harb, H.E., El-Tabakh, M.A.M., Khattab, A.M., Mohamed, Y.A., Saleh, A.M., El-Abeid, S.E. (2024). Recent Advances of Using Innovative Strategies in Management of Millet Plant Pathogens. In: Mishra, S., Kumar, S., Srivastava, R.C. (eds) Genetic improvement of Small Millets. Springer, Singapore. https://doi.org/10.1007/978-981-99-7232-6_13

Download citation

Publish with us

Policies and ethics

Navigation