Quasi-Classical Spin Boson Models

  • Conference paper
  • First Online:
Quantum Mathematics I (INdAM 2022)

Part of the book series: Springer INdAM Series ((SINDAMS,volume 57))

Included in the following conference series:

  • 269 Accesses

Abstract

In this short note we study Spin-Boson Models from the Quasi-Classical standpoint. In the Quasi-Classical limit, the field becomes macroscopic while the particles it interacts with, they remain quantum. As a result, the field becomes a classical environment that drives the particle system with an explicit effective dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use a somewhat unorthodox notation for the second quantization functor. We denote by \(\mathcal {G}_{\varepsilon }^{\mathrm {s}}(\mathfrak {h})=\bigoplus _{n\in \mathbb {N}} \mathfrak {h}_n\) the symmetric Fock space over \(\mathfrak {h}\) in which the canonical creation and annihilation operators have \(\varepsilon \)-dependent commutation relations:

    $$\displaystyle \begin{aligned} [a_{\varepsilon}(f),a_{\varepsilon}^{*}(g)]= \varepsilon\langle f , g \rangle_{\mathfrak{h}};. \end{aligned}$$

    The second quantization of an operator A on \(\mathfrak {h}\) is written thus as

    $$\displaystyle \begin{aligned} \mathrm{d}\mathcal{G}_{\varepsilon}(A)= \sum_{i,j=0}^{\infty}A_{ij}a^{*}_{\varepsilon,i}a_{\varepsilon,j}\;, \end{aligned}$$

    with \(A_{ij}=\langle e_i , A e_j \rangle _{\mathfrak {h}}\), and \(a^{\sharp }_{\varepsilon ,k}=a_{\varepsilon }^{\sharp }(e_k)\), with \(\{e_k\}_{k\in \mathbb {N}}\) an O.N.B. of \(\mathfrak {h}\). The quasi-classical parameter \(\varepsilon \) clearly plays the role of a semiclassical parameter for the (Segal) field \(\varphi _{\varepsilon }(f)= a^{*}_{\varepsilon }(f)+ a_{\varepsilon }(f)\): as \(\varepsilon \to 0\), the field becomes a classical commutative observable [see 15, for a gentler and more detailed introduction to the quasi-classical scaling], and [11,12,13,14] for other recent papers concerning the quasi-classical regime.

  2. 2.

    We denote by \(\mathcal {C}_0^{\infty }\big (\mathrm {d}\mathcal {G}_{\varepsilon }(1)\big )\) the Fock space vectors with a finite number of particles (i.e., for which the k-particle components are all zero for \(k> \underline {k}\), for some \( \underline {k}\in \mathbb {N}\)).

  3. 3.

    A cylindrical measure is a finitely additive measure that is \(\sigma \)-additive on any subalgebra of cylinders generated by a finite number of vectors.

  4. 4.

    \(\mathfrak {U}_{t,s}(z)\) is the unique solution of \(i\partial _t\mathfrak {U}_{t,s}(z) = \mathfrak {H}(z) \mathfrak {U}_{t,s}(z)\) and \(\mathfrak {U}_{t,t}(z)=\mathbf 1\).

  5. 5.

    We restrict our attention only to the limits \(\nu =1\) and \(\nu =0\), since they encode all different and well-defined outcomes that one could obtain for the effective dynamics. In fact, every choice of \(\nu (\varepsilon )\) such that \(\lim _{\varepsilon \to 0}\varepsilon \nu (\varepsilon )= \lambda >0\) would amount in a rescaling of the field dispersion relation, while any choice such that either \(\lim _{\varepsilon \to 0}\varepsilon \nu (\varepsilon )= \lambda = \infty \) or such that the limit does not exist would prevent an explicit definition of the effective dynamics in the limit \(\varepsilon \to 0\).

  6. 6.

    We plan to investigate the non-Markovian character of the quasi-classical effective dynamics in an upcoming paper.

  7. 7.

    If \(\mathfrak {S}\) has compact resolvent (and it is bounded from below), \(\mathfrak {A}=\mathfrak {S} + \lvert \inf \sigma (\mathfrak {S}) \rvert _{ }^{}+1\) would be a natural choice, and the associated condition (2) would mean that mass is not lost if one restricts to states with \(\varepsilon \)-uniformly-bounded Spin kinetic energy.

  8. 8.

    The scalar convergence \(\xi _{\varepsilon }\underset {\varepsilon \to 0}{\longrightarrow } \mu \) is perfectly analogous to the quasi-classical one, and could be seen as a particular case of it where the additional degrees of freedom are trivial. Let us remark again that for the scalar case—and thus also for the unentangled quasi-classical states considered here – (1) is sufficient to guarantee that \(\mu (\mathfrak {h})=1\).

  9. 9.

    Quasi-classical convergence is the pointwise convergence of Fourier transforms in weak-* topology, i.e. when tested with compact operators. Since \(\mathfrak {sk}_{r+}\) is compact, we have pointwise convergence of \(\hat {\Upsilon }_{\varepsilon }(\tau )\) traced together with \(\mathfrak {sk}_{r+}\).

References

  1. Arai, A., Hirokawa, M.: On the existence and uniqueness of ground states of a generalized spin-boson model. J. Funct. Anal. 151(2), 455–503 (1997). http://dx.doi.org/10.1006/jfan.1997.3140

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammari, Z., Nier, F.: Mean field limit for bosons and infinite dimensional phase-space analysis. Ann. Henri Poincaré 9(8), 1503–1574 (2008). http://dx.doi.org/10.1007/s00023-008-0393-5. ar**v:0711.4128

  3. Ammari, Z., Nier, F.: Mean field limit for bosons and propagation of Wigner measures. J. Math. Phys. 50(4), 042107 (2009). http://dx.doi.org/10.1063/1.3115046. ar**v:0807.3108

  4. Ammari, Z., Nier, F.: Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states. J. Math. Pures Appl. 95(6), 585–626 (2011). http://dx.doi.org/10.1016/j.matpur.2010.12.004. ar**v:1003.2054

  5. Ammari, Z., Nier, F.: Mean field propagation of infinite-dimensional Wigner measures with a singular two-body interaction potential. Ann. Sc. Norm. Super. Pisa Cl. Sci. XIV(1), 155–220 (2015). http://dx.doi.org/10.2422/2036-2145.201112_004. ar**v:1111.5918

  6. Amour, L., Lascar, R., Nourrigat, J.: Weyl calculus in Wiener spaces and in QED (2016). ar**v:1610.06379

    Google Scholar 

  7. Amour, L., Jager, L., Nourrigat, J.: Infinite dimensional semiclassical analysis and applications to a model in NMR (2017). ar**v:1705.07097

    Google Scholar 

  8. Amour, L., Lascar, R., Nourrigat, J.: Weyl calculus in QED I. The unitary group. J. Math. Phys. 58(1), 013501 (2017). http://dx.doi.org/10.1063/1.4973742. ar**v:1510.05293

  9. Arai, A.: An asymptotic analysis and its application to the nonrelativistic limit of the Pauli-Fierz and a spin-boson model. J. Math. Phys. 31(11), 2653–2663 (1990). http://dx.doi.org/10.1063/1.528966

    Article  MathSciNet  MATH  Google Scholar 

  10. Arai, A.: A theorem on essential selfadjointness with application to Hamiltonians in nonrelativistic quantum field theory. J. Math. Phys. 32(8), 2082–2088 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carlone, R., Correggi, M., Falconi, M., Olivieri, M.: Emergence of time-dependent point interactions in polaron models. SIAM J. Math. Anal. 53(4), 4657–4691 (2021). http://dx.doi.org/10.1137/20M1381344. ar**v:1904.11012

  12. Correggi, M., Falconi, M.: Effective potentials generated by field interaction in the quasi-classical limit. Ann. Henri Poincaré 19(1), 189–235 (2018). . ar**v:1701.01317

  13. Correggi, M., Falconi, M., Olivieri, M.: Magnetic Schrödinger operators as the quasi-classical limit of Pauli-Fierz-type models. J. Spectr. Theory 9(4), 1287–1325 (2019). . ar**v:1711.07413

  14. Correggi, M., Falconi, M., Olivieri, M.: Ground state properties in the quasi-classical regime. Anal. PDE (2022, in press). ar**v:2007.09442

    Google Scholar 

  15. Correggi, M., Falconi, M., Olivieri, M.: Quasi-classical dynamics. J. Eur. Math. Soc. 25, 731–783 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cook, J.M.: The mathematics of second quantization. Proc. Nat. Acad. Sci. U. S. A. 37, 417–420 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dereziński, J.: Van Hove Hamiltonians—exactly solvable models of the infrared and ultraviolet problem. Ann. Henri Poincaré 4(4), 713–738 (2003). http://dx.doi.org/10.1007/s00023-003-0145-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2013). ISBN 978-1-107-01111-3, xii+674pp.

    Google Scholar 

  19. Falconi, M.: Classical limit of the Nelson model with cutoff. J. Math. Phys. 54(1), 012303 (2013). http://dx.doi.org/10.1063/1.4775716. ar**v:1205.4367

  20. Falconi, M.: Self-adjointness criterion for operators in Fock spaces. Math. Phys. Anal. Geom. 18(1), Art. 2 (2015). ar**v:1405.6570

    Google Scholar 

  21. Falconi, M.: Cylindrical Wigner measures. Doc. Math. 23, 1677–1756 (2018). http://dx.doi.org/10.25537/dm.2018v23.1677-1756. ar**v:1605.04778

  22. Hasler, D., Herbst, I.: Ground states in the spin boson model. Ann. Henri Poincaré 12(4), 621–677 (2011). http://dx.doi.org/10.1007/s00023-011-0091-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Joye, A., Merkli, M., Spehner, D.: Adiabatic transitions in a two-level system coupled to a free boson reservoir. Ann. Henri Poincaré 21(10), 3157–3199 (2020). http://dx.doi.org/10.1007/s00023-020-00946-w

    Article  MathSciNet  MATH  Google Scholar 

  24. Könenberg, M., Merkli, M.: On the irreversible dynamics emerging from quantum resonances. J. Math. Phys. 57(3), 033,302 (2016). http://dx.doi.org/10.1063/1.4944614

    Article  MathSciNet  MATH  Google Scholar 

  25. Könenberg, M., Merkli, M., Song, H.: Ergodicity of the spin-boson model for arbitrary coupling strength. Commun. Math. Phys. 336(1), 261–285 (2015). http://dx.doi.org/10.1007/s00220-014-2242-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987). http://dx.doi.org/10.1103/RevModPhys.59.1. Erratum: Rev. Mod. Phys. 67(1), 725 (1995)

    Google Scholar 

  27. Lonigro, D.: Generalized spin-boson models with non-normalizable form factors. J. Math. Phys. 63(7), 072,105 (2022). http://dx.doi.org/10.1063/5.0085576

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions, P.-L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9(3), 553–618 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Merkli, M.: Quantum markovian master equations: resonance theory shows validity for all time scales. Ann. Phys. 412, 167,996 (2020). http://dx.doi.org/https://doi.org/10.1016/j.aop.2019.167996

    Article  MathSciNet  MATH  Google Scholar 

  30. Merkli, M.: Dynamics of open quantum systems i, oscillation and decay. Quantum 6, 615 (2022)

    Article  Google Scholar 

  31. Merkli, M.: Dynamics of open quantum systems ii, markovian approximation. Quantum 6, 616 (2022)

    Article  Google Scholar 

  32. Merkli, M., Sigal, I.M., Berman, G.P.: Decoherence and thermalization. Phys. Rev. Lett. 98(13), 130401 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.130401

    Article  MathSciNet  MATH  Google Scholar 

  33. Merkli, M., Berman, G.P., Borgonovi, F., Gebresellasie, K.: Evolution of entanglement of two qubits interacting through local and collective environments. Quant. Inf. Comput. 11(5–6), 390–419 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Merkli, M., Berman, G.P., Sayre, R.: Electron transfer reactions: generalized spin-boson approach. J. Math. Chem. 51(3), 890–913 (2013). http://dx.doi.org/10.1007/s10910-012-0124-5

    Article  MathSciNet  MATH  Google Scholar 

  35. Merkli, M., Berman, G.P., Sayre, R.T., Gnanakaran, S., Könenberg, M., Nesterov, A.I., Song, H.: Dynamics of a chlorophyll dimer in collective and local thermal environments. J. Math. Chem. 54(4), 866–917 (2016). http://dx.doi.org/10.1007/s10910-016-0593-z

    Article  MathSciNet  MATH  Google Scholar 

  36. Mohseni, M., Omar, Y., Engel, G.S., Plenio, M.B. (eds.): Quantum Effects in Biology. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  37. Palma, G.M., Suominen, K.A., Ekert, A.K.: Quantum computers and dissipation. Proc. Roy. Soc. Lond. Ser. A 452(1946), 567–584 (1996). http://dx.doi.org/10.1098/rspa.1996.0029

    Article  MathSciNet  MATH  Google Scholar 

  38. Segal, I.E.: Foundations of the theory of dynamical systems of infinitely many degrees of freedom. I. Mat.-Fys. Medd. Danske Vid. Selsk. 31(12), 39pp. (1959)

    MathSciNet  Google Scholar 

  39. Segal, I.E.: Foundations of the theory of dyamical systems of infinitely many degrees of freedom. II. Can. J. Math. 13, 1–18 (1961)

    Article  MATH  Google Scholar 

  40. Xu, D., Schulten, K.: Coupling of protein motion to electron transfer in a photosynthetic reaction center: investigating the low temperature behavior in the framework of the spin—boson model. Chem. Phys. 182(2), 91–117 (1994). https://doi.org/10.1016/0301-0104(94)00016-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Correggi, M., Falconi, M., Merkli, M. (2023). Quasi-Classical Spin Boson Models. In: Correggi, M., Falconi, M. (eds) Quantum Mathematics I. INdAM 2022. Springer INdAM Series, vol 57. Springer, Singapore. https://doi.org/10.1007/978-981-99-5894-8_3

Download citation

Publish with us

Policies and ethics

Navigation