Integrated OMIC Approaches for Bioenergy Crops

  • Chapter
  • First Online:
Biotechnology and Omics Approaches for Bioenergy Crops

Abstract

This book chapter discusses the application of integrated OMIC approaches for bioenergy crops. OMIC technologies such as genomics, transcriptomics, proteomics, and metabolomics have been increasingly used to identify genetic factors and metabolic pathways that play important roles in the growth and development of bioenergy crops. By integrating multiple OMIC datasets, researchers can gain a more comprehensive understanding of the molecular mechanisms underlying plant growth and development as well as responses to environmental stresses. The chapter provides an overview of the latest advances in integrated OMIC approaches for bioenergy crops, including the development of high-throughput sequencing platforms, bioinformatic tools, and computational models for data analysis. It also highlights some of the key challenges in applying these approaches, such as data integration and interpretation and the need for further validation of findings through experimental approaches. Furthermore, the chapter showcases some case studies that illustrate the use of integrated OMIC approaches in bioenergy crop research. These case studies cover a range of bioenergy crops, including switchgrass, corn, and sugarcane, and highlight the potential of OMIC approaches to improve plant growth, yield, and quality as well as to enhance stress tolerance and resilience. Overall, this book chapter provides an in-depth exploration of the current state of integrated OMIC approaches for bioenergy crops and highlights their potential for advancing the development of sustainable bioenergy production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Brunner AM, Nilsson O (2004) Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytol 164:43–51

    Article  CAS  PubMed  Google Scholar 

  • Cao P, Zhao Y, Wu F, **n D, Liu C, Wu X, Lv J, Chen Q, Qi Z (2022) Multi-omics techniques for soybean molecular breeding. Int J Mol Sci 23:4994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso-Silva CB, Costa EA, Mancini MC, Balsalobre TWA, Canesin LEC, Pinto LR, Carneiro MS, Garcia AAF, de Souza AP, Vicentini R (2014) De novo assembly and transcriptome analysis of contrasting sugarcane varieties. PLoS One 9:e88462

    Article  PubMed  PubMed Central  Google Scholar 

  • Casler MD, Tobias CM, Kaeppler SM, Buell CR, Wang ZY, Cao P, Schmutz J, Ronald P (2011) The switchgrass genome: tools and strategies. Plant Genome 4

    Google Scholar 

  • Chung JN (2013) Grand challenges in bioenergy and biofuel research: engineering and technology development, environmental impact, and sustainability, vol 1. Frontiers Media SA, p 4

    Google Scholar 

  • Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 5:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Frigon JC, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels Bioprod Biorefin 4:447–458

    Article  CAS  Google Scholar 

  • Gomez-Cabrero D, Abugessaisa I, Maier D, Teschendorff A, Merkenschlager M, Gisel A, Ballestar E, Bongcam-Rudloff E, Conesa A, Tegnér J (2014) Data integration in the era of omics: current and future challenges. BMC Syst Biol 8:1–10

    Article  Google Scholar 

  • Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT (2011) Examination of triacylglycerol biosynthetic pathways via De Novo transcriptomic and proteomic analyses in an Unsequenced microalga. PLoS One 6:e25851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan SS, Williams GA, Jaiswal AK (2019) Moving towards the second generation of lignocellulosic biorefineries in the EU: drivers, challenges, and opportunities. Renew Sust Energ Rev 101:590–599

    Article  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, **ao B, Li X, Zhang Q, **ong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Zhang H, Jiao P, Wei X, Liu S, Guan S, Ma Y (2022) The integration of metabolomics and transcriptomics provides new insights for the identification of genes key to auxin synthesis at different growth stages of maize. Int J Mol Sci 23:13195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  CAS  PubMed  Google Scholar 

  • Koçar G, Civaş N (2013) An overview of biofuels from energy crops: current status and future prospects. Renew Sust Energ Rev 28:900–916

    Article  Google Scholar 

  • Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. Crit Rev Plant Sci 24:1–21

    Article  CAS  Google Scholar 

  • Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ, Wang T, Li Y, Li Y, Semagn K, Zhang X (2015) High-resolution genetic map** of maize pan-genome sequence anchors. Nat Commun 6:1–8

    Article  CAS  Google Scholar 

  • Ma X-F, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T (2012) High resolution genetic map** by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS One 7:e33821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Wan D, Duan B, Bai X, Bai Q, Chen N, Ma T (2019) Genome sequence and genetic transformation of a widely distributed and cultivated poplar. Plant Biotechnol J 17:451–460

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Wang B, He G, Wang Y, Tang X, Wang S, Ma Y, Fu C, Chai G, Zhou G (2019) Metabolomics integrated with transcriptomics reveals redirection of the phenylpropanoids metabolic flux in Ginkgo biloba. J Agric Food Chem 67:3284–3291

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Feng Q, Li Y, Zhao Q, Zhou C, Lu H, Fan D, Yan J, Lu Y, Tian Q (2021) Chromosome-scale assembly and analysis of biomass crop miscanthus lutarioriparius genome. Nat Commun 12:2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra N, Panda P, Parida B, Mishra B (2016) Way forward to achieve sustainable and cost-effective biofuel production from microalgae: a review. Int J Environ Sci Technol 13:2735–2756

    Article  Google Scholar 

  • Misra BB, Langefeld C, Olivier M, Cox LA (2019) Integrated omics: tools, advances and future approaches. J Mol Endocrinol 62:R21–R45

    Article  CAS  Google Scholar 

  • Mouratiadou I, Stella T, Gaiser T, Wicke B, Nendel C, Ewert F, van der Hilst F (2020) Sustainable intensification of crop residue exploitation for bioenergy: opportunities and challenges. GCB Bioenergy 12:71–89

    Article  CAS  PubMed  Google Scholar 

  • Poudel S, Giannone RJ, Rodriguez M, Raman B, Martin MZ, Engle NL, Mielenz JR, Nookaew I, Brown SD, Tschaplinski TJ (2017) Integrated omics analyses reveal the details of metabolic adaptation of clostridium thermocellum to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass. Biotechnol Biofuels 10:1–14

    Article  Google Scholar 

  • Ramos-Madrigal J, Smith BD, Moreno-Mayar JV, Gopalakrishnan S, Ross-Ibarra J, Gilbert MTP, Wales N (2016) Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr Biol 26:3195–3201

    Article  CAS  PubMed  Google Scholar 

  • Reid WV, Ali MK, Field CB (2020) The future of bioenergy. Glob Chang Biol 26:274–286

    Article  PubMed  Google Scholar 

  • Riaño-Pachón DM, Mattiello L (2017) Draft genome sequencing of the sugarcane hybrid SP80-3280. F1000Research 6

    Google Scholar 

  • Sablok G, Fu Y, Bobbio V, Laura M, Rotino GL, Bagnaresi P, Allavena A, Velikova V, Viola R, Loreto F, Li M, Varotto C (2014) Fuelling genetic and metabolic exploration of C3 bioenergy crops through the first reference transcriptome of Arundo donax L. Plant Biotechnol J 12:554–567

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma MK, Sharma R, Cao P, Jenkins J, Bartley LE, Qualls M, Grimwood J, Schmutz J, Rokhsar D, Ronald PC (2012) A genome-wide survey of switchgrass genome structure and organization. PLoS One 7:e33892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng J, Yan M, Wang J, Zhao L, Zhou F, Hu Z, ** S, Diao Y (2021) The complete chloroplast genome sequences of five miscanthus species, and comparative analyses with other grass plastomes. Ind Crop Prod 162:113248

    Article  CAS  Google Scholar 

  • Slade R, Bauen A, Gross R (2014) Global bioenergy resources. Nat Clim Change 4:99–105

    Article  Google Scholar 

  • Stamenković OS, Siliveru K, Veljković VB, Banković-Ilić IB, Tasić MB, Ciampitti IA, Đalović IG, Mitrović PM, Sikora VŠ, Prasad PV (2020) Production of biofuels from sorghum. Renew Sust Energ Rev 124:109769

    Article  Google Scholar 

  • Thirugnanasambandam PP, Hoang NV, Henry RJ (2018) The challenge of analyzing the sugarcane genome. Front Plant Sci 9:616

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiedge K, Li X, Merrill AT, Davisson D, Chen Y, Yu P, Tantillo DJ, Last RL, Zerbe P (2022) Comparative transcriptomics and metabolomics reveal specialized metabolite drought stress responses in switchgrass (Panicum virgatum). New Phytol 236:1393–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P et al (2006) The genome of black cottonwood, Populus trichocarpa (torr. & gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Valentine J, Clifton-Brown J, Hastings A, Robson P, Allison G, Smith P (2012) Food vs. fuel: the use of land for lignocellulosic ‘next generation’energy crops that minimize competition with primary food production. GCB Bioenergy 4:1–19

    Article  Google Scholar 

  • Vilanova C, Porcar M (2016) Are multi-omics enough? Nat Microbiol 1:1–2

    Article  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mahmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmood, A. et al. (2023). Integrated OMIC Approaches for Bioenergy Crops. In: Aasim, M., Baloch, F.S., Nadeem, M.A., Habyarimana, E., Ahmed, S., Chung, G. (eds) Biotechnology and Omics Approaches for Bioenergy Crops. Springer, Singapore. https://doi.org/10.1007/978-981-99-4954-0_4

Download citation

Publish with us

Policies and ethics

Navigation